Skip to main content

Advertisement

Log in

Central Nervous System Dysfunction in Obesity-Induced Hypertension

  • Hypertension and the Brain (S Stocker, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin’s sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow “neural adaptivity” within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Alwan A, World Health Organization. Global Status Report on Noncommunicable Diseases. 2010.

  2. Garrison RJ, Kannel WB, Stokes 3rd J, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16(2):235–51.

    Article  CAS  PubMed  Google Scholar 

  3. Eikelis N, Esler M. The neurobiology of human obesity. Exp Physiol. 2005;90(5):673–82.

    Article  PubMed  Google Scholar 

  4. Rahmouni K, Haynes WG, Mark AL. Cardiovascular and sympathetic effects of leptin. Curr Hypertens Rep. 2002;4(2):119–25.

    Article  PubMed  Google Scholar 

  5. Mark AL. Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R566–81.

    Article  CAS  PubMed  Google Scholar 

  6. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. da Silva AA, do Carmo J, Dubinion J, Hall JE. The role of the sympathetic nervous system in obesity-related hypertension. Curr Hypertens Rep. 2009;11(3):206–11.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hall JE, Zappe DH, AlonsoGalicia M, Granger JP, Brands MW, Kassab SE. Mechanisms of obesity-induced hypertension. News Physiol Sci. 1996;11:255–61.

    Google Scholar 

  9. Landsberg L, Young JB. Fasting, feeding and regulation of the sympathetic nervous system. NEJM. 1978;298(23):1295–301.

    Article  CAS  PubMed  Google Scholar 

  10. Bray GA. Obesity, a disorder of nutrient partitioning: the MONA LISA hypothesis. J Nutr. 1991;121(8):1146–62.

    CAS  PubMed  Google Scholar 

  11. McAllen RM, May CN, Campos RR. The supply of vasomotor drive to individual classes of sympathetic neuron. Clin Exp Hypertens. 1997;19(5–6):607–18.

    Article  CAS  PubMed  Google Scholar 

  12. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96(10):3423–9.

    Article  CAS  PubMed  Google Scholar 

  13. Abate NI, Mansour YH, Tuncel M, Arbique D, Chavoshan B, Kizilbash A, et al. Overweight and sympathetic overactivity in black Americans. Hypertension. 2001;38(3):379–83.

    Article  CAS  PubMed  Google Scholar 

  14. Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50(5):862–8.

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106(20):2533–6.

    Article  PubMed  Google Scholar 

  16. Grassi G, Seravalle G, DellOro R, Turri C, Bolla GB, Mancia G. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension. 2000;36(4):538–42.

    Article  CAS  PubMed  Google Scholar 

  17. Lambert E, Straznicky N, Eikelis N, Esler M, Dawood T, Masuo K, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25(7):1411–9.

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez GE, Ballard TP, Beske SD, Davy KP. Subcutaneous obesity is not associated with sympathetic neural activation. Am J Physiol Heart Circ Physiol. 2004;287(1):H414–8.

    Article  CAS  PubMed  Google Scholar 

  19. Grassi G, Dell'Oro R, Facchini A, Quarti Trevano F, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22(12):2363–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lambert EA, Rice T, Eikelis N, Straznicky NE, Lambert GW, Head GA et al. Sympathetic activity and cardiovascular risk in non-diabetic severely obese patients: The effect of 10 % weight loss. Am J Hypertens. 2014:In press.

  21. Straznicky NE, Lambert EA, Grima MT, Eikelis N, Richards K, Nestel PJ et al. The effects of dietary weight loss on indices of norepinephrine turnover: Modulatory influence of hyperinsulinemia. Obesity (Silver Spring). 2013.

  22. Shibao C, Gamboa A, Diedrich A, Ertl AC, Chen KY, Byrne DW, et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  23. Carlson SH, Shelton J, White CR, Wyss JM. Elevated sympathetic activity contributes to hypertension and salt sensitivity in diabetic obese Zucker rats. Hypertension. 2000;35(1 Pt 2):403–8.

    Article  CAS  PubMed  Google Scholar 

  24. Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N, Lim K, et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension. 2012;60:163–71.

    Article  CAS  PubMed  Google Scholar 

  25. Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, Weiss R, et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest. 2008;118(4):1458–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rajapakse NW KF, Fernandez S, Evans RG, Head GA, Kaye DM. L-arginine transporters: a new treatment target in obesity induced hypertension? Hypertension, Abstract from the High Blood Pressure Research Council of Australia. 2013.

  27. Lim K, Burke SL, Head GA. Obesity related hypertension and the role of insulin and leptin in high fat fed rabbits. Hypertension. 2013;61(3):628–34. This landmark report demonstated that elevated blood pressure and renal sympathetic nerve activity induced by a high-fat diet for several weeks are predominantly mediated by delayed central sympathoexcitatory actions of the hormone leptin. Central actions of insulin contribute to a smaller proportion of the hypertension but independently of renal sympathetic activity. Two faculty of 1000 recommendations.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  29. Frühbeck G. Peripheral actions of leptin and its involvement in disease. Nutr Rev. 2002;60(10 Pt 2):S47–55. discussion S68-84, 5–7.

    Article  PubMed  Google Scholar 

  30. Haque MS, Minokoshi Y, Hamai M, Iwai M, Horiuchi M, Shimazu T. Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes. 1999;48(9):1706–12.

    Article  CAS  PubMed  Google Scholar 

  31. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100(2):270–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31(1 Pt 2):409–14.

    Article  CAS  PubMed  Google Scholar 

  33. Dunbar JC, Hu Y, Lu H. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes. 1997;46(12):2040–3.

    Article  CAS  PubMed  Google Scholar 

  34. Dunbar JC, Lu H. Leptin-induced increase in sympathetic nervous and cardiovascular tone is mediated by proopiomelanocortin (POMC) products. Brain Res Bull. 1999;50(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  35. Haynes WG, Morgan DA, Djalali A, Sivitz WI, Mark AL. Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension. 1999;33(1 Pt 2):542–7.

    Article  CAS  PubMed  Google Scholar 

  36. Li B, Shi Z, Cassaglia PA, Brooks VL. Leptin acts in the forebrain to differentially influence baroreflex control of lumbar, renal, and splanchnic sympathetic nerve activity and heart rate. Hypertension. 2013;61(4):812–9.

    Article  CAS  PubMed  Google Scholar 

  37. Warne JP, Alemi F, Reed AS, Varonin JM, Chan H, Piper ML, et al. Impairment of central leptin-mediated PI3K signaling manifested as hepatic steatosis independent of hyperphagia and obesity. Cell Metab. 2011;14(6):791–803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Satoh N, Ogawa Y, Katsuura G, Numata Y, Tsuji T, Hayase M, et al. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes. 1999;48(9):1787–93.

    Article  CAS  PubMed  Google Scholar 

  39. Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J Clin Endocrinol Metab. 1999;84(2):711–7.

    CAS  PubMed  Google Scholar 

  40. Matsumura K, Abe I, Tsuchihashi T, Fujishima M. Central effects of leptin on cardiovascular and neurohormonal responses in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2000;278(5):R1314–20.

    CAS  PubMed  Google Scholar 

  41. Mark AL, Correia ML, Rahmouni K, Haynes WG. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens. 2002;20(7):1245–50.

    Article  CAS  PubMed  Google Scholar 

  42. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A. 1997;94(16):8878–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Selective resistance to central neural administration of leptin in agouti obese mice. Hypertension. 2002;39(2 Part 2 Suppl S):486–90.

    Article  CAS  PubMed  Google Scholar 

  44. Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, et al. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest. 2000;105(9):1243–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tumer N, Erdos B, Matheny M, Cudykier I, Scarpace PJ. Leptin antagonist reverses hypertension caused by leptin overexpression, but fails to normalize obesity-related hypertension. J Hypertens. 2007;25(12):2471–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lambert E, Sari CI, Dawood T, Nguyen J, McGrane M, Eikelis N, et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension. 2010;56(3):351–8.

    Article  CAS  PubMed  Google Scholar 

  47. Alsmadi O, Melhem M, Hebbar P, Thareja G, John SE, Alkayal F, et al. Leptin in association with common variants of MC3R mediates hypertension. Am J Hypertens. 2014;27(7):973–81.

    Article  CAS  PubMed  Google Scholar 

  48. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  49. Tallam LS, Stec DE, Willis MA, da Silva AA, Hall JE. Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension. 2005;46(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  50. Dubinion JH, da Silva AA, Hall JE. Enhanced blood pressure and appetite responses to chronic central melanocortin-3/4 receptor blockade in dietary-induced obesity. J Hypertens. 2010;28(7):1466–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Matsumura K, Tsuchihashi T, Abe I, Iida M. Central alpha-melanocyte-stimulating hormone acts at melanocortin-4 receptor to activate sympathetic nervous system in conscious rabbits. Brain Res. 2002;948(1–2):145–8.

    Article  CAS  PubMed  Google Scholar 

  52. Li P, Cui BP, Zhang LL, Sun HJ, Liu TY, Zhu GQ. Melanocortin 3/4 receptors in paraventricular nucleus modulate sympathetic outflow and blood pressure. Exp Physiol. 2013;98(2):435–43.

    Article  CAS  PubMed  Google Scholar 

  53. do Carmo JM, da Silva AA, Rushing JS, Hall JE. Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol. 2012;302(5):R561–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Landsberg L. Obesity, metabolism, and hypertension. Yale J Biol Med. 1989;62(5):511–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Holt SJ, York DA. Interaction of intracerebroventricular insulin and glucose in the regulation of the activity of sympathetic efferent nerves to brown adipose tissue in lean and obese Zucker rats. Brain Res. 1989;500(1–2):384–8.

    Article  CAS  PubMed  Google Scholar 

  56. Muntzel M, Morgan D, Mark A, Johnson A. Intracerebroventricular insulin produces nonuniform regional increases in sympathetic nerve activity. Am J Physiol Regul Integr Comp Physiol. 1994;36:R1350–R35.

    Google Scholar 

  57. Cassaglia PA, Hermes SM, Aicher SA, Brooks VL. Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats. J Physiol. 2011;589(Pt 7):1643–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Pricher MP, Freeman KL, Brooks VL. Insulin in the brain increases gain of baroreflex control of heart rate and lumbar sympathetic nerve activity. Hypertension. 2008;51(2):514–20.

    Article  CAS  PubMed  Google Scholar 

  59. Morgan DA, Rahmouni K. Differential effects of insulin on sympathetic nerve activity in agouti obese mice. J Hypertens. 2010;28(9):1913–9.

  60. Dunbar JC, Lu H. Chronic intracerebroventricular insulin attenuates the leptin-mediated but not alpha melanocyte stimulating hormone increase in sympathetic and cardiovascular responses. Brain Res Bull. 2000;52(2):123–6.

    Article  CAS  PubMed  Google Scholar 

  61. Palatini P, Majahalme S, Amerena J, Nesbitt S, Vriz O, Michieletto M, et al. Determinants of left ventricular structure and mass in young subjects with sympathetic over-activity. The Tecumseh Offspring Study. J Hypertens. 2000;18(6):769–75.

    Article  CAS  PubMed  Google Scholar 

  62. Carroll JF, Dwyer TM, Grady AW, Reinhart GA, Montani JP, Cockrell K, et al. Hypertension, cardiac hypertrophy, and neurohumoral activity in a new animal model of obesity. Am J Physiol Heart Circ Physiol. 1996;271(1 Pt 2):H373–8.

    CAS  Google Scholar 

  63. Burke SL, Head GA. Method for in vivo calibration of renal sympathetic nerve activity in rabbits. J Neurosci Methods. 2003;127:63–74.

    Article  PubMed  Google Scholar 

  64. Burke SL, Prior LJ, Lukoshkova EV, Lim K, Barzel B, Davern P, et al. Reduced preprandial dipping accounts for rapid elevation of blood pressure and renal sympathetic nerve activity in rabbits fed a high-fat diet. Chronobiol Int. 2013;30(5):726–38. This study identified that elevated blood pressure induced by a high-fat diet from the first day is mediated by increased sympathetic nerve activity due to a reduction in preprandial dipping and that increased calories, glucose, insulin, and leptin may account for early changes whilst lon- term loss of dipping may be related to increased sensitivity of sympathetic pathways.

    Article  CAS  PubMed  Google Scholar 

  65. Prior LJ, Eikelis N, Armitage JA, Davern PJ, Burke SL, Montani J-P, et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2010;55(4):862–8.

    Article  CAS  PubMed  Google Scholar 

  66. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54.

    CAS  PubMed  Google Scholar 

  67. Jones DW. Body weight and blood pressure. Effects of weight reduction on hypertension. Am J Hypertens. 1996;9(8):50s–4.

    Article  CAS  PubMed  Google Scholar 

  68. Carroll JF, Huang M, Hester RL, Cockrell K, Mizelle HL. Hemodynamic alterations in hypertensive obese rabbits. Hypertension. 1995;26(3):465–70.

    Article  CAS  PubMed  Google Scholar 

  69. Carroll JF, Summers RL, Dzielak DJ, Cockrell K, Montani JP, Mizelle HL. Diastolic compliance is reduced in obese rabbits. Hypertension. 1999;33(3):811–5.

    Article  CAS  PubMed  Google Scholar 

  70. Antic V, Kiener-Belforti F, Tempini A, Montani J-P. Obesity-induced hypertension in rabbits is not salt-sensitive. J Hypertens. 1999;17 Suppl 3:S209.

    Google Scholar 

  71. Taylor PD, Samuelsson AM, Poston L. Maternal obesity and the developmental programming of hypertension: a role for leptin. Acta Physiol (Oxf). 2014;210(3):508–23.

    Article  CAS  Google Scholar 

  72. Catalano PM. Obesity, insulin resistance, and pregnancy outcome. Reproduction. 2010;140(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  73. Meehan S, Beck CR, Mair-Jenkins J, Leonardi-Bee J, Puleston R. Maternal obesity and infant mortality: a meta-analysis. Pediatrics. 2014

  74. Velkoska E, Cole TJ, Morris MJ. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am J Physiol Endocrinol Metab. 2005;288(6):E1236–43.

    Article  CAS  PubMed  Google Scholar 

  75. Prior L, Davern P, Burke S, Lim K, Armitage J, Head G. Exposure to a high fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2014;63(2):338–45. This landmark study revealed that offspring from mothers consuming a high-fat diet exhibit an adverse cardiovascular profile in adulthood including hypertension and increased renal sympathetic activity due to altered central hypothalamic sensitivity to leptin and ghrelin. Faculty of 1000 recommendation.

    Article  CAS  PubMed  Google Scholar 

  76. Henry SL, Barzel B, Burke SL, Head GA, Armitage JA. Developmental origins of obesity related hypertension. Clin Exp Pharmacol Physiol. 2012;39:799–806.

    Article  CAS  PubMed  Google Scholar 

  77. Athukorala C, Rumbold AR, Willson KJ, Crowther CA. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth. 2010;10:56.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Barzel B, Burke S, Armitage J, Head G, editors. Alpha melanocortin stimulating hormone actions at the ventromedial hypothalamus increase renal sympathetic actvity in fat fed rabbits. Experimental Biology; 2013 April 2013; Boston, USA.

  79. Epel ES, McEwen B, Seeman T, Matthews K, Castellazzo G, Brownell KD, et al. Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom Med. 2000;62(5):623–32.

    Article  CAS  PubMed  Google Scholar 

  80. Bjorntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes Rev. 2001;2(2):73–86.

    Article  CAS  PubMed  Google Scholar 

  81. Lambert E, Dawood T, Straznicky N, Sari C, Schlaich M, Esler M, et al. Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure. J Hypertens. 2010;28(3):543–50.

    Article  CAS  PubMed  Google Scholar 

  82. Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR, et al. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17(8):1125–33.

    Article  CAS  PubMed  Google Scholar 

  83. Pasquali R, Anconetani B, Chattat R, Biscotti M, Spinucci G, Casimirri F, et al. Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: effects of the corticotropin-releasing factor/arginine-vasopressin test and of stress. Metab Clin Exp. 1996;45(3):351–6.

    Article  CAS  PubMed  Google Scholar 

  84. Kuniyoshi FHS, Trombetta IC, Batalha LT, Rondon M, Laterza MC, Gowdak MMG, et al. Abnormal neurovascular control during sympathoexcitation in obesity. Obes Res. 2003;11(11):1411–9.

    Article  PubMed  Google Scholar 

  85. Carroll D, Phillips AC, Der G. Body mass index, abdominal adiposity, obesity, and cardiovascular reactions to psychological stress in a large community sample. Psychosom Med. 2008;70(6):653–60.

    Article  PubMed  Google Scholar 

  86. Korner P. Essential hypertension and its causes: neural and non neural mechanisms. New York: Oxford University Press; 2007.

    Google Scholar 

  87. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74(4–5):703–8.

    Article  CAS  PubMed  Google Scholar 

  88. Marsh AJ, Fontes MA, Killinger S, Pawlak DB, Polson JW, Dampney RA. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension. 2003;42(4):488–93.

    Article  CAS  PubMed  Google Scholar 

  89. McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: focus on cardiovascular modulation. Auton Neurosci. 2005;123(1–2):1–11.

    Article  PubMed  Google Scholar 

  90. De Matteo R, Head GA, Mayorov DN. Angiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits. Am J Physiol Regul Integr Comp Physiol. 2006;290(1):R257–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Health & Medical Research Council of Australia (NHMRC; APP526618 and APP1043205). The study was supported, in part, by the Victorian Government’s Operational Infrastructure Support Program. G.A. Head was funded by an NHMRC Fellowship (APP1002186). K. Lim was funded by an NHMRC Postdoctoral Fellowship (APP1053928). P.J. Davern was funded an NHMRC/National Heart Foundation Postdoctoral Fellowship (APP1012881).

Compliance with Ethics Guidelines

Conflict of Interest

Geoffrey A. Head, Kyungjoon Lim, Benjamin Barzel, Sandra L. Burke, and Pamela J. Davern have received a grant from the National Health & Medical Research Council of Australia.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Head.

Additional information

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Head, G.A., Lim, K., Barzel, B. et al. Central Nervous System Dysfunction in Obesity-Induced Hypertension. Curr Hypertens Rep 16, 466 (2014). https://doi.org/10.1007/s11906-014-0466-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0466-4

Keywords

Navigation