Skip to main content

Advertisement

Log in

Coupling Between Respiratory and Sympathetic Activities as a Novel Mechanism Underpinning Neurogenic Hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Enhanced sympathetic outflow to the heart and resistance vessels greatly contributes to the onset and maintenance of neurogenic hypertension. There is a consensus that the development of hypertension (clinical and experimental) is associated with an impairment of sympathetic reflex control by arterial baroreceptors. More recently, chronic peripheral chemoreflex activation, as observed in obstructive sleep apnea, has been proposed as another important risk factor for hypertension. In this review, we present and discuss recent experimental evidence showing that changes in the respiratory pattern, elicited by chronic intermittent hypoxia, play a key role in increasing sympathetic activity and arterial pressure in rats. This concept parallels results observed in other models of neurogenic hypertension, such as spontaneously hypertensive rats and rats with angiotensin II–salt-induced hypertension, pointing out alterations in the central coupling of respiratory and sympathetic activities as a novel mechanism underlying the development of neurogenic hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2009;108 2:227–37.

    Article  PubMed  Google Scholar 

  2. • Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90 2:513–557. This is a nice review discussing different aspects of the sympathetic nervous system, including quantification, assessment, regional responsiveness, and mechanisms controlling sympathetic activity in health and diseases.

    Article  PubMed  CAS  Google Scholar 

  3. Caples SM, Gami AS, Somers VK. Obstructive sleep apnea. Ann Intern Med. 2005;142 3:187–97.

    PubMed  Google Scholar 

  4. • Williams SK, Ravenell J, Jean-Louis G, Zizi F, Underberg JA, McFarlane SI, et al. Resistant hypertension and sleep apnea: pathophysiologic insights and strategic Management. Curr Diab Rep. 2011;11 1:64–69. The authors discuss recent epidemiologic data demonstrating that obstructive sleep apnea is an important risk factor for arterial hypertension, which, in a significant proportion of patients, is resistant to concurrent antihypertensive pharmacologic treatment.

    Article  PubMed  Google Scholar 

  5. Narkiewicz K, van de Borne PJH, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97 10:943–5.

    PubMed  CAS  Google Scholar 

  6. Fletcher EC. Physiological and genomic consequences of intermittent hypoxia: invited review: physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol. 2001;90 4:1600–5.

    PubMed  CAS  Google Scholar 

  7. Zoccal DB, Paton JF, Machado BH. Do changes in the coupling between respiratory and sympathetic activities contribute to neurogenic hypertension? Clin Exp Pharmacol Physiol. 2009;36 12:1188–96.

    Article  PubMed  CAS  Google Scholar 

  8. Zoccal DB, Bonagamba LGH, Oliveira FRT, Antunes-Rodrigues J, Machado BH. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia. Exp Physiol. 2007;92 1:79–85.

    Article  PubMed  Google Scholar 

  9. • Zoccal DB, Bonagamba LGH, Paton JFR, Machado BH. Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Exp Physiol. 2009;94 9:972–983. These authors reported that hypertensive juvenile CIH rats exhibit a sensitization of cardiac baroreflex gain, in contrast to the general notion that sympathetic-mediated hypertension is associated with impairment of baroreflex control.

    Article  PubMed  CAS  Google Scholar 

  10. Allahdadi KJ, Walker BR, Kanagy NL. Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension. 2005;45 4:705–9.

    Article  PubMed  CAS  Google Scholar 

  11. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84 2:482–92.

    PubMed  CAS  Google Scholar 

  12. Dick TE, Hsieh YH, Wang N, Prabhakar N. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol. 2007;92 1:87–97.

    Article  PubMed  Google Scholar 

  13. Marcus NJ, Li YL, Bird CE, Schultz HD, Morgan BJ. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir Physiol Neurobiol. 2010;171 1:36–45.

    Article  PubMed  CAS  Google Scholar 

  14. • Zoccal DB, Simms AE, Bonagamba LGH, Braga VA, Pickering AE, Paton JFR, et al. Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol. 2008;586 13:3253–3265. These authors documented for the first time in the experimental model of CIH that alterations in the central respiratory network may cause an additional excitatory drive to sympathetic neurons and thus may contribute to increased sympathetic activity and, consequently, arterial pressure.

    Article  PubMed  CAS  Google Scholar 

  15. Somers VK. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Investig. 1995;96 4:1897–904.

    Article  PubMed  CAS  Google Scholar 

  16. Gilmartin GS, Lynch M, Tamisier R, Weiss JW. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2010;299 3:H925–931.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg HE, Sica A, Batson D, Scharf SM. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol. 1999;86 1:298–305.

    PubMed  CAS  Google Scholar 

  18. Braga VA, Soriano RN, Machado BH. Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia. Exp Physiol. 2006;91 6:1025–31.

    Article  PubMed  Google Scholar 

  19. Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pendyala S, et al. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009;29 15:4903–10.

    Article  PubMed  CAS  Google Scholar 

  20. Prabhakar NR, Kumar GK. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010;174 1–2:156–61.

    Article  PubMed  Google Scholar 

  21. Coleman CG, Wang G, Park L, Anrather J, Delagrammatikas GJ, Chan J, et al. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. J Neurosci. 2010;30 36:12103–12.

    Article  PubMed  CAS  Google Scholar 

  22. Kc P, Balan KV, Tjoe SS, Martin RJ, LaManna JC, Haxhiu MA, et al. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. J Physiol. 2010;588 4:725–40.

    Article  PubMed  CAS  Google Scholar 

  23. Kline DD, Ramirez-Navarro A, Kunze DL. Adaptive depression in synaptic transmission in the nucleus of the solitary tract after in vivo chronic intermittent hypoxia: evidence for homeostatic plasticity. J Neurosci. 2007;27 17:4663–73.

    Article  PubMed  CAS  Google Scholar 

  24. Greenberg HE, Sica AL, Scharf SM, Ruggiero DA. Expression of c-fos in the rat brainstem after chronic intermittent hypoxia. Brain Res. 1999;816 2:638–45.

    Article  PubMed  CAS  Google Scholar 

  25. McGuire M, Zhang Y, White DP, Ling L. Chronic intermittent hypoxia enhances ventilatory long-term facilitation in awake rats. J Appl Physiol. 2003;95 4:1499–508.

    PubMed  Google Scholar 

  26. Ling L, Fuller DD, Bach KB, Kinkead R, Olson Jr EB. Mitchell GS: Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci. 2001;21 14:5381–8.

    PubMed  CAS  Google Scholar 

  27. McGuire M, Zhang Y, White DP, Ling L. Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. Am J Physiol Regul Integr Comp Physiol. 2004;286 2:R334–341.

    Article  PubMed  CAS  Google Scholar 

  28. Dick TE, Hsieh YH, Morrison S, Coles SK, Prabhakar N. Entrainment pattern between sympathetic and phrenic nerve activities in the Sprague-Dawley rat: hypoxia-evoked sympathetic activity during expiration. Am J Physiol Regul Integr Comp Physiol. 2004;286 6:R1121–1128.

    Article  PubMed  CAS  Google Scholar 

  29. Mandel DA, Schreihofer AM. Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. J Physiol. 2009;587 Pt 2:461–75.

    Article  PubMed  CAS  Google Scholar 

  30. Costa-Silva JH, Zoccal DB, Machado BH. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J Neurophysiol. 2010;103 4:2095–106.

    Article  PubMed  CAS  Google Scholar 

  31. Mancia G. Sympathetic activation in congestive heart failure. Eur Heart J. 1990;11 Suppl A:3–11.

    PubMed  Google Scholar 

  32. Salgado HC, Barale AR, Castania JA, Machado BH, Chapleau MW, Fazan Jr R. Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol. 2007;292 1:H593–600.

    Article  PubMed  CAS  Google Scholar 

  33. Andresen MC, Krauhs JM, Brown AM. Relationship of aortic wall and baroreceptor properties during development in normotensive and spontaneously hypertensive rats. Circ Res. 1978;43 5:728–38.

    PubMed  CAS  Google Scholar 

  34. Lin M, Liu R, Gozal D, Wead WB, Chapleau MW, Wurster R, et al. Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol. 2007;293 2:H997–1006.

    Article  PubMed  CAS  Google Scholar 

  35. Gu H, Lin M, Liu J, Gozal D, Scrogin KE, Wurster R, et al. Selective impairment of central mediation of baroreflex in anesthetized young adult Fischer 344 rats after chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2007;293 5:H2809–2818.

    Article  PubMed  CAS  Google Scholar 

  36. Yan B, Soukhova-O’Hare GK, Li L, Lin Y, Gozal D, Wead WB, et al. Attenuation of heart rate control and neural degeneration in nucleus ambiguus following chronic intermittent hypoxia in young adult Fischer 344 rats. Neuroscience. 2008;153 3:709–20.

    Article  PubMed  CAS  Google Scholar 

  37. Lai CJ, Yang CC, Hsu YY, Lin YN, Kuo TB. Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol. 2006;100 6:1974–82.

    Article  PubMed  CAS  Google Scholar 

  38. Malpas SC. The rhythmicity of sympathetic nerve activity. Prog Neurobiol. 1998;56 1:65–96.

    Article  PubMed  CAS  Google Scholar 

  39. Barman SM, Gebber GL. Sympathetic nerve rhythm of brain stem origin. Am J Physiol. 1980;239 1:R42–47.

    PubMed  CAS  Google Scholar 

  40. Miyazaki M, Arata A, Tanaka I, Ezure K. Activity of rat pump neurons is modulated with central respiratory rhythm. Neurosci Lett. 1998;249 1:61–4.

    Article  PubMed  CAS  Google Scholar 

  41. Haselton JR, Guyenet PG. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am J Physiol. 1989;256 3 Pt 2:R739–750.

    PubMed  CAS  Google Scholar 

  42. Baekey DM, Molkov YI, Paton JF, Rybak IA, Dick TE. Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir Physiol Neurobiol. 2010;174 1–2:135–45.

    Article  PubMed  Google Scholar 

  43. Mandel DA, Schreihofer AM. Central respiratory modulation of barosensitive neurones in rat caudal ventrolateral medulla. J Physiol. 2006;572 Pt 3:881–96.

    PubMed  CAS  Google Scholar 

  44. Paton JF. A working heart-brainstem preparation of the mouse. J Neurosci Methods. 1996;65 1:63–8.

    Article  PubMed  CAS  Google Scholar 

  45. Tian GF, Peever JH, Duffin J. Botzinger-complex, bulbospinal expiratory neurones monosynaptically inhibit ventral-group respiratory neurones in the decerebrate rat. Exp Brain Res. 1999;124 2:173–80.

    Article  PubMed  CAS  Google Scholar 

  46. Sun QJ, Minson J, Llewellyn-Smith IJ, Arnolda L, Chalmers J, Pilowsky P. Botzinger neurons project towards bulbospinal neurons in the rostral ventrolateral medulla of the rat. J Comp Neurol. 1997;388 1:23–31.

    Article  PubMed  CAS  Google Scholar 

  47. Abdala AP, Rybak IA, Smith JC, Paton JF. Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation. J Physiol. 2009;587 Pt 14:3539–59.

    Article  PubMed  CAS  Google Scholar 

  48. Bernardi L, Porta C, Gabutti A, Spicuzza L, Sleight P. Modulatory effects of respiration. Auton Neurosci. 2001;90 1–2:47–56.

    Article  PubMed  CAS  Google Scholar 

  49. • Simms AE, Paton JF, Pickering AE, Allen AM. Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol. 2009;587 Pt 3:597–610. These authors showed that juvenile spontaneously hypertensive rats, prior to the onset of arterial hypertension, exhibit higher levels of sympathetic activity associated with an amplification of inspiration-related bursts and an increased magnitude of Traube-Hering pressure waves, pointing out a causal relationship between respiratory-sympathetic coupling and sympathetic overactivity in these animals.

    Article  PubMed  CAS  Google Scholar 

  50. • Toney GM, Pedrino GR, Fink GD, Osborn JW. Does enhanced respiratory-sympathetic coupling contribute to peripheral neural mechanisms of angiotensin II-salt hypertension? Exp Physiol. 2010;95 5:587–594. These authors demonstrated that the activity of presympathetic neurons that exhibit respiratory (but not cardiac) rhythm is increased in angiotensin II–salt-dependent hypertensive rats, suggesting that an enhanced central respiratory-vasomotor neuron coupling is an important mechanism contributing to increased sympathetic activity in this experimental model.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedito H. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoccal, D.B., Machado, B.H. Coupling Between Respiratory and Sympathetic Activities as a Novel Mechanism Underpinning Neurogenic Hypertension. Curr Hypertens Rep 13, 229–236 (2011). https://doi.org/10.1007/s11906-011-0198-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0198-7

Keywords

Navigation