Skip to main content
Log in

The relationship between “race” and genetics in biomedical research

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The post-human genome sequencing era has presented several daunting challenges for biomedical research. How do we begin to quantify the level of sequence variation that exists within and between human populations? This challenge has serious implications for the enigma called “race,” genetic ancestry, group definition, and membership. Another challenge has been the attempt to understand the role DNA sequence variation contributes to variation in susceptibility to common complex diseases. How these challenges are met will have an impact on our ability to determine if health disparities (eg, cardiovascular disease) are due to biological differences. Here we discuss genetic variation among African Americans and Hispanic Americans and its implications for “race.” We believe that the casual use of “race” to define groups in biomedical research has contributed to our limited understanding of complex disease etiology and risk factors driving health disparities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Risch N, Burchard E, Ziv E, Tang H: Categorization of humans in biomedical research: genes, race and disease. Genome Biol 2002, 3:comment 2007.

  2. Burchard EG, Ziv E, Coyle N, et al.: The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003, 348:1170–1175.

    Article  PubMed  Google Scholar 

  3. Kittles RA, Weiss KM: Race, ancestry, and genes: implications for defining disease risk. Annu Rev Genomics Hum Genet 2003, 4:33–67.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg NA, Pritchard JK, Weber JL, et al.: Genetic structure of human populations. Science 2002, 298:2381–2385.

    Article  PubMed  CAS  Google Scholar 

  5. Serre D, Paabo S: Evidence for gradients of human genetic diversity within and among continents. Genome Res 2004, 14:1679.

    Article  PubMed  CAS  Google Scholar 

  6. Goodman AH: Why genes don’t count (for racial differences in health). Am J Public Health 2000, 90:1699–1702.

    Article  PubMed  CAS  Google Scholar 

  7. Crawford DC, Akey DT, Nickerson DA: The patterns of natural variation in human genes. Annu Rev Genomics Hum Genet 2005, 6:287–312.

    Article  PubMed  CAS  Google Scholar 

  8. Hinds DA, Stuve LL, Nilsen GB, et al.: Whole-genome patterns of common DNA variation in three human populations. Science 2005, 307:1072–1079.

    Article  PubMed  CAS  Google Scholar 

  9. Gabriel SB, Schaffner SF, Nguyen H, et al.: The structure of haplotype blocks in the human genome. Science 2002, 296:2225–2229.

    Article  PubMed  CAS  Google Scholar 

  10. Cavalli-Sforza LL, Feldman MW: The application of molecular genetic approaches to the study of human evolution. Nat Genet 2003, 33(Suppl):266–275.

    Article  PubMed  CAS  Google Scholar 

  11. Cockerham CC, Weir BS: Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 1984, 40:157–164.

    Article  PubMed  CAS  Google Scholar 

  12. Weir BS, Hill WG: Estimating f-statistics. Annu Rev Genet 2002, 36:721–750.

    Article  PubMed  CAS  Google Scholar 

  13. Jobling MA, Hurles M, Tyler-Smith C: Human Evolutionary Genetics: Origins, Peoples and Disease. New York: Garland Science; 2004.

    Google Scholar 

  14. Cooper RS, Kaufman JS, Ward R: Race and genomics. N Engl J Med 2003, 348:1166–1170.

    Article  PubMed  Google Scholar 

  15. Lewontin RC: The apportionment of human diversity. Evolutionary Biology 1972, 6:381–398.

    Google Scholar 

  16. Tang H, Quertermous T, Rodriguez B, et al.: Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 2005, 76(2):268–275.

    Article  PubMed  CAS  Google Scholar 

  17. Collins FS: What we do and don’t know about ‘race,’ ‘ethnicity,’ genetics and health at the dawn of the genome era. Nat Genet 2004, 36(11 Suppl):S13–15.

    Article  PubMed  CAS  Google Scholar 

  18. Shriver MD, Kittles RA: Genetic ancestry and the search for personalized genetic histories. Nat Rev Genet 2004, 5:611–618.

    Article  PubMed  CAS  Google Scholar 

  19. Burchard EG, Borrell LN, Choudhry S, et al.: Race, genetics, and health disparities. Latino populations: a unique opportunity for the study of race, genetics, and social environment in epidemiological research. Am J Public Health 2005, 95:2161–2168.

    Article  Google Scholar 

  20. Harris BK: Southern Savory. Chapel Hill: University of North Carolina Press; 1964.

    Google Scholar 

  21. Parra EJ, Kittles RA, Shriver MD: Implications of correlations between skin color and genetic ancestry for biomedical research. Nat Genet 2004, 36(11 Suppl):S54–60.

    Article  PubMed  CAS  Google Scholar 

  22. Choudhry S, Coyle NE, Tang H, et al.: Population stratification confounds genetic association studies among Latinos. Hum Genet 2006, 118:652–664.

    Article  PubMed  Google Scholar 

  23. Halder I, Shriver MD: Measuring and using admixture to study the genetics of complex diseases. Hum Genomics 2003, 1:52–62.

    PubMed  CAS  Google Scholar 

  24. Tang H, Jorgenson E, Gadde M, et al.: Racial admixture and its impact on BMI and blood pressure in African and Mexican Americans. Hum Genet 2006, 119:624–633.

    Article  PubMed  Google Scholar 

  25. Helgadottir A, Manolescu A, Helgason A, et al.: A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 2006, 38:68–74.

    Article  PubMed  CAS  Google Scholar 

  26. McKeigue PM: Prospects for admixture mapping of complex traits. Am J Hum Genet 2005, 76:1–7.

    Article  PubMed  CAS  Google Scholar 

  27. Reich D, Patterson N: Will admixture mapping work to find disease genes? Philos Trans R Soc Lond B Biol Sci 2005, 360:1605–1607.

    Article  PubMed  CAS  Google Scholar 

  28. Reich D, Patterson N, De Jager PL, et al.: A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 2005, 37:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  29. Zhu X, Luke A, Cooper RS, et al.: Admixture mapping for hypertension loci with genome-scan markers. Nat Genet 2005, 37:177–181.

    Article  PubMed  CAS  Google Scholar 

  30. Freedman ML, Haiman CA, Patterson N, et al.: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A 2006, 103:14068–14073.

    Article  PubMed  CAS  Google Scholar 

  31. Akey JM, Eberle MA, Rieder MJ, et al.: Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2004, 2:e286.

    Article  PubMed  CAS  Google Scholar 

  32. Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4:e72.

    Article  PubMed  Google Scholar 

  33. Storey JD, Madeoy J, Strout JL, et al.: Gene-expression variation within and among human populations. Am J Hum Genet 2007, 80:502–509.

    Article  PubMed  CAS  Google Scholar 

  34. Thompson EE, Kuttab-Boulos H, Yang L, et al.: Sequence diversity and haplotype structure at the human CYP3A cluster. Pharmacogenomics J 2006, 6:105–114.

    Article  PubMed  CAS  Google Scholar 

  35. DiRienzo A, Richard RH: An evolutionary framework for common disease: the ancestral-susceptibility model. Trends Genet 2005, 21:596–601.

    Article  CAS  Google Scholar 

  36. Young JH, Chang YP, Kim JD, et al.: Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet 2005, 1:e82.

    Article  PubMed  CAS  Google Scholar 

  37. Burt VL, Cutler JA, Higgins M, et al.: Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension 1995, 26:60–69.

    PubMed  CAS  Google Scholar 

  38. Liew CC, Dzau VJ: Molecular genetics and genomics of heart failure. Nat Rev Genet 2004, 5:811–825.

    Article  PubMed  CAS  Google Scholar 

  39. Watkins H, Farral M: Genetic susceptibility to coronary artery disease: from promise to progress. Nat Rev Genet 2006, 7:163–173.

    Article  PubMed  CAS  Google Scholar 

  40. Crawford DC, Carlson CS, Rieder MJ, et al.: Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. Am J Hum Genet 2004, 74:610–622.

    Article  PubMed  CAS  Google Scholar 

  41. Helgason A, Palsson S, Thorleifsson G, et al.: Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 2007, 39:218–225.

    Article  PubMed  CAS  Google Scholar 

  42. Corbo RM, Scacchi R: Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a “thrifty” allele? Ann Hum Genet 1999, 63(Pt 4):301–310.

    Article  PubMed  CAS  Google Scholar 

  43. Byrd WM, Clayton LA: An American Health Dilemma. New York: Routledge; 2000.

    Google Scholar 

  44. Keita SO, Kittles RA, Royal CD, et al.: Conceptualizing human variation. Nat Genet 2004, 36(11 Suppl):S17–20.

    Article  PubMed  CAS  Google Scholar 

  45. LaVeist TA: Beyond dummy variables and sample selection: what health services researchers ought to know about race as a variable. Health Serv Res 1994, 29:1–16.

    PubMed  CAS  Google Scholar 

  46. Rebbeck TR, Sankar P: Ethnicity, ancestry, and race in molecular epidemiologic research. Cancer Epidemiol Biomarkers Prev 2005, 14(11 Pt 1):2467–2471.

    Article  PubMed  Google Scholar 

  47. Shields AE, Fortun M, Hammonds EM, et al.: The use of race variables in genetic studies of complex traits and the goal of reducing health disparities: a transdisciplinary perspective. Am Psychol 2005, 60:77–103.

    Article  PubMed  Google Scholar 

  48. Bonilla C, Shriver M, Parra E, et al.: Ancestral proportions and their association with skin pigmentation and bone mineral density in Puerto Rican women from New York city. Hum Genet 2004, 115:57–68.

    Article  PubMed  Google Scholar 

  49. Shriver MD, Parra EJ, Dios S, et al.: Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 2003, 112:387–399.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick A. Kittles PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, J.B., Kittles, R.A. The relationship between “race” and genetics in biomedical research. Current Science Inc 9, 196–201 (2007). https://doi.org/10.1007/s11906-007-0035-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-007-0035-1

Keywords

Navigation