Skip to main content
Log in

Treating Diabetes in Patients with Heart Failure: Moving from Risk to Benefit

  • Invited Commentary
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Over the past two decades, therapeutics for diabetes have evolved from drugs with known heart failure risk to classes with potential benefit for patients with heart failure. As many as 25 to 35 % of patients with heart failure carry a diagnosis of type 2 diabetes mellitus. Therefore, newer drug classes including dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide 1 (GIP-1) agonists, and sodium-glucose cotransporter 2 (SGLT-2) inhibitors are being examined for cardiovascular safety as well as their effects on left ventricular function, quality of life, and other measures of disease progression. The purpose of this review is to summarize the existing evidence on these classes of anti-diabetic agents in patients with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Givertz MM, Cohn JN. Pharmacologic management of heart failure in the ambulatory setting. In: Antman E, Sabatine M, editors. Cardiovascular therapeutics: A companion braunwalds heart disease. 4th ed. 2012. pp. 241–69.

  2. Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24:1614–9.

    Article  CAS  PubMed  Google Scholar 

  3. Das SR, Drazner MH, Yancy CW, Stevenson LW, Gersh BJ, Dries DL. Effects of diabetes mellitus and ischemic heart disease on the progression from asymptomatic left ventricular dysfunction to symptomatic heart failure: a retrospective analysis from the Studies of Left Ventricular Dysfunction (SOLVD) Prevention trial. Am Heart J. 2004;148:883–8.

    Article  PubMed  Google Scholar 

  4. Paneni F. DPP-4 inhibitors, heart failure and type 2 diabetes: all eyes on safety. Cardiovasc Diagn Ther. 2015;5:471–8.

    PubMed  PubMed Central  Google Scholar 

  5. Qi Y, Zhu Q, Zhang K, Thomas C, Wu Y, Kumar R, et al. Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and β-myosin heavy chain gene expression. Circ Heart Fail. 2015;8:198–208.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, et al. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail. 2013;6:1039–48.

    Article  CAS  PubMed  Google Scholar 

  7. Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 2013;229:232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64:1388–400.

    Article  PubMed  Google Scholar 

  9. Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012;17:325–44.

    Article  PubMed  Google Scholar 

  10. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–67.

    Article  CAS  PubMed  Google Scholar 

  11. Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy—fact or fiction? Herz. 2011;36:102–15.

    Article  CAS  PubMed  Google Scholar 

  12. Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015;385:2107–17.

  13. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Control Group, Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52:2288–98.

    Article  Google Scholar 

  15. Ruiter R, Visser LE, van Herk-Sukel MPP, Geelhoed-Duijvestijn PH, de Bie S, Straus SMJM, et al. Prescribing of rosiglitazone and pioglitazone following safety signals: analysis of trends in dispensing patterns in the Netherlands from 1998 to 2008. Drug Saf. 2012;35:471–80.

    Article  CAS  PubMed  Google Scholar 

  16. Niyomnaitham S, Page A, La Caze A, Whitfield K, Smith AJ. Utilisation trends of rosiglitazone and pioglitazone in Australia before and after safety warnings. BMC Health Serv Res. 2014;14:151.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Horita S, Nakamura M, Satoh N, Suzuki M, Seki G. Thiazolidinediones and edema: recent advances in the pathogenesis of thiazolidinediones-induced renal sodium retention. PPAR Res. 2015;2015:646423.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bailey SD, Xie C, Do R, Montpetit A, Diaz R, Mohan V, et al. Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study. Diabetes Care. 2010;33:2250–3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Erdmann E, Spanheimer R, Charbonnel B, PROactive Study Investigators. Pioglitazone and the risk of cardiovascular events in patients with type 2 diabetes receiving concomitant treatment with nitrates, renin-angiotensin system blockers, or insulin: results from the PROactive study (PROactive 20). J Diabetes. 2010;2:212–20.

    Article  CAS  PubMed  Google Scholar 

  20. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2008;10:1221–38.

    Article  CAS  PubMed  Google Scholar 

  21. DREAM Trial Investigators, Dagenais GR, Gerstein HC, Holman R, Budaj A, Escalante A, et al. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care. 2008;31:1007–14.

    Article  Google Scholar 

  22. Lincoff AM, Tardif J-C, Schwartz GG, Nicholls SJ, Rydén L, Neal B, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA. 2014;311:1515–25.

  23. Lincoff AM, Tardif J-C, Neal B, Nicholls SJ, Rydén L, Schwartz GG, et al. Evaluation of the dual peroxisome proliferator-activated receptor α/γ agonist aleglitazar to reduce cardiovascular events in patients with acute coronary syndrome and type 2 diabetes mellitus: rationale and design of the AleCardio trial. Am Heart J. 2013;166:429–34.

    Article  CAS  PubMed  Google Scholar 

  24. Henry RR, Buse JB, Wu H, Durrwell L, Mingrino R, Jaekel K, et al. Efficacy, safety and tolerability of aleglitazar in patients with type 2 diabetes: pooled findings from three randomized phase III trials. Diabetes Obes Metab. 2015;17:560–5.

    Article  CAS  PubMed  Google Scholar 

  25. Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27:256–63.

    Article  CAS  PubMed  Google Scholar 

  26. Eurich DT, Majumdar SR, McAlister FA, Tsuyuki RT, Johnson JA. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28:2345–51.

    Article  CAS  PubMed  Google Scholar 

  27. Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111:583–90.

    Article  CAS  PubMed  Google Scholar 

  28. Masoudi FA, Wang Y, Inzucchi SE, Setaro JF, Havranek EP, Foody JM, et al. Metformin and thiazolidinedione use in Medicare patients with heart failure. JAMA. 2003;290:81–5.

    Article  CAS  PubMed  Google Scholar 

  29. Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L, et al. Comparative safety and effectiveness of metformin in patients with diabetes and heart failure: systematic review of observational studies involving 34000 patients. Circ Heart Fail. 2013;6:395–402.

    Article  CAS  PubMed  Google Scholar 

  30. Aytac U, Dang NH. CD26/dipeptidyl peptidase IV: a regulator of immune function and a potential molecular target for therapy. Curr Drug Targets Immune Endocr Metab Disord. 2004;4:11–8.

    Article  CAS  Google Scholar 

  31. Sauvé M, Ban K, Momen MA, Zhou Y-Q, Henkelman RM, Husain M, et al. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes. 2010;59:1063–73.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hocher B, Reichetzeder C, Alter ML. Renal and cardiac effects of DPP4 inhibitors—from preclinical development to clinical research. Kidney Blood Press Res. 2012;36:65–84.

    Article  CAS  PubMed  Google Scholar 

  33. Zhong J, Goud A, Rajagopalan S. Glycemia lowering and risk for heart failure: recent evidence from studies of dipeptidyl peptidase inhibition. Circ Heart Fail. 2015;8:819–25.

    Article  PubMed  Google Scholar 

  34. Connelly KA, Zhang Y, Advani A, Advani SL, Thai K, Yuen DA, et al. DPP-4 inhibition attenuates cardiac dysfunction and adverse remodeling following myocardial infarction in rats with experimental diabetes. Cardiovasc Ther. 2013;31:259–67.

    Article  CAS  PubMed  Google Scholar 

  35. Mulvihill EE, Varin EM, Ussher JR, Campbell JE, Bang KWA, Abdullah T, et al. Inhibition of dipeptidyl peptidase-4 impairs ventricular function and promotes cardiac fibrosis in high fat-fed diabetic mice. Diabetes. 2016;65:742–54.

    Article  PubMed  Google Scholar 

  36. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.

    Article  CAS  PubMed  Google Scholar 

  37. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130:1579–88.

    Article  CAS  PubMed  Google Scholar 

  38. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35.

    Article  CAS  PubMed  Google Scholar 

  39. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385:2067–76.

  40. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42.

    Article  CAS  PubMed  Google Scholar 

  41. Bhatt DL, Cavender MA. Do dipeptidyl peptidase-4 inhibitors increase the risk of heart failure? JACC Heart Fail. 2014;2:583–5.

    Article  PubMed  Google Scholar 

  42. Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010;3:195–201.

    Article  PubMed  Google Scholar 

  43. Miyoshi T, Nakamura K, Yoshida M, Miura D, Oe H, Akagi S, et al. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats. Cardiovasc Diabetol. 2014;13:43.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Son JW, Kim S. Dipeptidyl peptidase 4 inhibitors and the risk of cardiovascular disease in patients with type 2 diabetes: a tale of three studies. Diabetes Metab J. 2015;39:373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Giorda CB, Picariello R, Tartaglino B, Marafetti L, Di Noi F, Alessiato A, et al. Hospitalisation for heart failure and mortality associated with dipeptidyl peptidase 4 (DPP-4) inhibitor use in an unselected population of subjects with type 2 diabetes: a nested case-control study. BMJ Open. 2015;5, e007959.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu S, Hopper I, Skiba M, Krum H. Dipeptidyl peptidase-4 inhibitors and cardiovascular outcomes: meta-analysis of randomized clinical trials with 55,141 participants. Cardiovasc Ther. 2014;32:147–58.

    Article  CAS  PubMed  Google Scholar 

  47. Vest AR. Incretin-related drug therapy in heart failure. Curr Heart Fail Rep. 2015;12:24–32.

    Article  CAS  PubMed  Google Scholar 

  48. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.

    Article  CAS  PubMed  Google Scholar 

  49. Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2013;305:H295–304.

    Article  CAS  PubMed  Google Scholar 

  50. DeNicola M, Du J, Wang Z, Yano N, Zhang L, Wang Y, et al. Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab. 2014;307:E630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thrainsdottir I, Malmberg K, Olsson A, Gutniak M, Rydén L. Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diab Vasc Dis Res. 2004;1:40–3.

    Article  PubMed  Google Scholar 

  52. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12:694–9.

    Article  CAS  PubMed  Google Scholar 

  53. Halbirk M, Nørrelund H, Møller N, Holst JJ, Schmitz O, Nielsen R, et al. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol. 2010;298:H1096–102.

    Article  CAS  PubMed  Google Scholar 

  54. Nathanson D, Ullman B, Löfström U, Hedman A, Frick M, Sjöholm A, et al. Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlled clinical trial of efficacy and safety. Diabetologia. 2012;55:926–35.

    Article  CAS  PubMed  Google Scholar 

  55. Nathanson D, Frick M, Ullman B, Nyström T. Exenatide infusion decreases atrial natriuretic peptide levels by reducing cardiac filling pressures in type 2 diabetes patients with decompensated congestive heart failure. Diabetol Metab Syndr. 2016;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen W-R, Shen X-Q, Zhang Y, Chen Y-D, Hu S-Y, Qian G, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine. 2015

  57. Margulies KB, Anstrom KJ, Hernandez AF, Redfield MM, Shah MR, Braunwald E, et al. GLP-1 agonist therapy for advanced heart failure with reduced ejection fraction: design and rationale for the functional impact of GLP-1 for heart failure treatment study. Circ Heart Fail. 2014;7:673–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Margulies K, Anstrom K, Redfield M, et al. A randomized trial of liraglutide for high-risk heart failure patients with reduced ejection fraction (FIGHT). American Heart Association Scientific Sessions. 2015; Orlando; Abstract 20102.

  59. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57.

    Article  CAS  PubMed  Google Scholar 

  60. Jorsal A, Wiggers H, Holmager P, Nilsson B, Nielsen R, Boesgaard TW, et al. A protocol for a randomised, double-blind, placebo-controlled study of the effect of LIraglutide on left VEntricular function in chronic heart failure patients with and without type 2 diabetes (the LIVE study). BMJ Open. 2014;4, e004885.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lepore JJ, Olson E, Demopoulos L, Haws T, Fang Z, Barbour AM, et al. Effects of the novel long-acting GLP-1 agonist, albiglutide, on cardiac function, cardiac metabolism, and exercise capacity in patients with chronic heart failure and reduced ejection fraction. JACC Heart Fail. 2016. doi: 10.1016/j.jchf.2016.01.008.

  62. White JR. Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: a review of the evidence. Ann Pharmacother. 2015;49:582–98.

    Article  CAS  PubMed  Google Scholar 

  63. Kaushal S, Singh H, Thangaraju P, Singh J. Canagliflozin: a novel SGLT2 inhibitor for type 2 diabetes mellitus. North Am J Med Sci. 2014;6:107–13.

    Article  Google Scholar 

  64. Sehgal V, Bajwa SJS, Sehgal R, Consalvo JA. Management of diabetes in the elderly with canagliflozin: a newer hypoglycemic drug on the horizon. J Pharmacol Pharmacother. 2014;5:227–31.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Davies MJ, Trujillo A, Vijapurkar U, Damaraju CV, Meininger G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17:426–9.

    Article  CAS  PubMed  Google Scholar 

  66. Huang W-M, Hsu P-F, Cheng H-M, Lu D-Y, Cheng Y-L, Guo C-Y, et al. Determinants and prognostic impact of hyperuricemia in hospitalization for acute heart failure. Circ J. 2015.

  67. Huang H, Huang B, Li Y, Huang Y, Li J, Yao H, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16:15–24.

    Article  CAS  PubMed  Google Scholar 

  68. Vaduganathan M, Greene SJ, Ambrosy AP, Mentz RJ, Subacius HP, Chioncel O, et al. Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan trial). Am J Cardiol. 2014;114:1713–21.

    Article  CAS  PubMed  Google Scholar 

  69. Hare JM, Mangal B, Brown J, Fisher C, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol. 2008;51:2301–9.

    Article  CAS  PubMed  Google Scholar 

  70. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) study. Circulation. 2015;131:1763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  72. Safety and Effectiveness of SGLT-2 Inhibitors in Patients With Heart Failure and Diabetes (REFORM) [Internet]. clinicaltrials.gov. [cited 2016 Feb 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT02397421?term=dapagliflozin+and+heart+failure&rank=2

  73. Dapagliflozin Effect on Symptoms and Biomarkers in Diabetes Patients With Heart Failure (DEFINE-HF) [Internet]. clinicaltrials.gov. [cited 2016 Feb 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT02653482?term=dapagliflozin+and+heart+failure&rank=1

  74. Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events (DECLARE-TIMI58) [Internet]. clinicaltrials.gov. [cited 2016 Feb 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT01730534?term=timi-58&rank=1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Givertz.

Ethics declarations

Conflict of Interest

Ersilia M. DeFilippis and Michael M. Givertz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeFilippis, E.M., Givertz, M.M. Treating Diabetes in Patients with Heart Failure: Moving from Risk to Benefit. Curr Heart Fail Rep 13, 111–118 (2016). https://doi.org/10.1007/s11897-016-0291-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0291-y

Keywords

Navigation