Skip to main content

Advertisement

Log in

Hepatotoxicty of Agents Used in the Management of Inflammatory Bowel Disease: a 2020 Update

  • Liver (S Cotler and E Kallwitz, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As treatment options for inflammatory bowel disease (IBD) continue to expand, the opportunity for hepatotoxicity remains a clinical concern. This review looks to update the current literature on drug-induced liver injury (DILI) and liver-related complications from current and emerging treatments for Crohn’s disease (CD) and ulcerative colitis (UC).

Recent Findings

An extensive literature review on currently used medications to treat IBD and their liver-related side effects that includes mesalamine, thiopurines, certain antibiotics, methotrexate, anti-TNF agents including recently introduced biosimilars, anti-integrin therapy, anti-IL 12/IL 23 therapy, and small molecule JAK inhibitors.

Summary

Hepatotoxicity remains an important clinical issue when managing patients with IBD. Clinicians need to remain aware of the potential for liver-related adverse events with various medication classes and adjust their clinical monitoring as appropriate based on the agents being used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, et al. Drug-induced liver injury. Nat Rev Dis Primers. 2019;5(1):58.

    PubMed  Google Scholar 

  2. Yaccob A, Mari A. Practical clinical approach to the evaluation of hepatobiliary disorders in inflammatory bowel disease. Frontline Gastroenterology. 2019;10(3):309–15.

    CAS  PubMed  Google Scholar 

  3. Khokhar OS, Lewis JH. Hepatotoxicity of agents used in the management of inflammatory bowel disease. Dig Dis. 2010;28(3):508–18.

    PubMed  Google Scholar 

  4. • Lichtenstein GR, Loftus EV Jr, Isaacs KL, et al. ACG clinical guideline: management of Crohn’s disease in adults. Am J Gastroenterol. 2018;113(4):481–517 The most recent update on management of Crohns disease by the American College of Gastroenterology highlights how oral mesalamine should not be used for the treatment of active disease.

    PubMed  Google Scholar 

  5. Ransford RA, Langman MJ. Sulphasalazine and mesalazine: serious adverse reactions re-evaluated on the basis of suspected adverse reaction reports to the Committee on Safety of Medicines. Gut. 2002;51(4):536–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ham M, Moss A. Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev Clin Pharamacol. 2013;5(2):113–23.

    Google Scholar 

  7. • Rubin DT, Ananthakrishnan AN, Siegel CA, et al. ACG Clinical guideline: ulcerative colitis in adults. Am J Gastroenterol. 2019;114(3):384–413 The most recent update on management of ulcerative colitis by the American College of Gastroenterology continues to recommend use of both oral and rectal 5-ASA formulations for mildly active disease.

    PubMed  Google Scholar 

  8. Sehgal P, Colombel J. Aboubakr et al. systematic review: safety of mesalazine in ulcerative colitis. Aliment Pharmacol Ther. 2018;47(12):1597–609.

    CAS  PubMed  Google Scholar 

  9. Brimblecombe R. Mesalazine: a global safety evaluation. Scand J Gastroenterol Suppl. 1990;172:66.

    CAS  PubMed  Google Scholar 

  10. Loftus EV Jr, Kave SV, Bjorkman D. Systematic review: short-term adverse effects of 5-asminosalicylic acid agents in the treatment ofulcerative colitis. Aliment Pharmacol Ther. 2004;19(2):179–89.

    CAS  PubMed  Google Scholar 

  11. Love BL, Miller AD. Extended-release mesalamine granules for ulcerative colitis. Ann Pharmacother. 2012;46(11):1529–36.

    PubMed  Google Scholar 

  12. Stoshcus B, Meyhbehm M, Spengler U, et al. Cholestasis associated with mesalazine therapy in a patient with Crohn’s disease. J Hepatol. 1997;26:425–8.

    Google Scholar 

  13. Barroso N, Leo E, Guil A, Larrauri J, Tirado C, Zafra C, et al. Non-immunoallergic hepatotoxicity due to mesalazine. Gastroenterol Hepatol. 1999;22:176–9.

    CAS  PubMed  Google Scholar 

  14. Hautekeete ML, Bourgeois N, Potvin P, et al. Hypersensitivity with hepatotoxicity to mesalazine after hypersensitivity to sulfasalazine. Gastroenterology. 1992;22:176–9.

    Google Scholar 

  15. FDA. Highlights of prescribing information: Delzicol. 2015. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/204412s006lbl.pdf. 5 Apr 2020.

  16. Feagan BG, Chande N, MacDonald JK. Are there any differences in the efficacy and safety of different formulations of oral 5-ASA used for induction and maintenance of remission in ulcerative colitis? Evidence from cochrane reviews. Inflamm Bowel Dis. 2013;19(9):2031–40.

    PubMed  Google Scholar 

  17. Bjornsson E, Gu J, Kleiner D, et al. Azathioprine and 6-mercaptopurine induced liver injury: clinical features and outcomes. J Clin Gastroenterol. 2017;51(1):63–9.

    PubMed  PubMed Central  Google Scholar 

  18. DePinho RA, Goldberg CS, Lefkowitch JH. Azathioprine and the liver: evidence favoring idiosyncratic, mixed cholestatic-hepatocellular injury in man. Gastroenterology. 1984;86(1):162–5.

    CAS  PubMed  Google Scholar 

  19. Romagnuolo J, Sadowski DC, Lalor E, Jewell L, Thomson ABR. Cholestatic hepatocellular injury with azathioprine: a case report and review of the mechanisms of hepatotoxicity. Can J Gastroenterol. 1998;12(7):479–83.

    CAS  PubMed  Google Scholar 

  20. Chaparro M, Ordas I, Cabre E, et al. Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study of 3931 patients. Inflamm Bowel Dis. 2013;19(7):1404–10.

    PubMed  Google Scholar 

  21. Calafat M, Manosa M, Canete F. Increased risk of thiopurine-related adverse events in elderly patients with IBD. Aliment Pharmacol Ther. 2019;50(7):780–8.

    CAS  PubMed  Google Scholar 

  22. Broekman M, Coenen M, Marrewijk C, et al. More dose-dependent side effects with mercaptopurine over azathioprine in IBD treatment due to relatively higher dosing. Inflamm Bowel Dis. 2017;23(10):1873–81.

    PubMed  PubMed Central  Google Scholar 

  23. Seinen M, Asseldonk D, Boer N, et al. Nodular regenerative hyperplasia of the liver in patients with IBD treated with allopurinol-thiopurine combination therapy. Inflamm Bowel Dis. 2017;23(3):448–52.

    PubMed  Google Scholar 

  24. Van Asseldonk D, Jharap B, Verheij J, et al. The prevalence of nodular regenerative hyperplasia in inflammatory bowel disease patients treated with thioguanine is not associated with clinically significant liver disease. Inflam Bowel Dis. 2016;22(9):2112–20.

    Google Scholar 

  25. Wanless IR. Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2500 autopsies and a new classification of benign hepatocellular nodules. Hepatology. 1990;11(5):787–97.

    CAS  PubMed  Google Scholar 

  26. Wong D, Coenen M, Derijks L, et al. Early prediction of thiopurine-induced hepatotoxicity in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45(3):391–402.

    CAS  PubMed  Google Scholar 

  27. • Marinaki A, Arenas-Hernandez M. Reducing risk in thiopurine therapy. Xenobiotica. 2020;50(1):101–9 Recently published article advocating for continued monitoring of TMPT levels prior to initiation of therapy in addition to monitoring MMP and TGN levels for increased risk of both hepatotoxicity and decreased therapeutic response, respectively.

    CAS  PubMed  Google Scholar 

  28. Dong X, Zheng Q, Zhu M, Tong JL, Ran ZH. Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease. World J Gastroenterol. 2010;16(25):3187–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schroder T, Scmidt K, Olsen V, et al. Liver steatosis is a risk factor for hepatotoxicity in patients with inflammatory bowel disease under immunosuppressive treatment. Eur J Gastroenterol Hepatol. 2015;27(6):698–704.

    PubMed  Google Scholar 

  30. Mottet C, Schoepfer A, Juillerat P, et al. Experts opinion on the practical use of azathioprine and 6-mercaptopurine in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(11):2733–47.

    PubMed  Google Scholar 

  31. Nasser R, Kurnik D, Lurie Y, Nassar L, Yaacob A, Veitsman E, et al. Thiopurine hepatotoxicity can mimic intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol. 2020;44(2):e29–31.

    PubMed  Google Scholar 

  32. Casteele NV, Herfarth H, Katz J, et al. American gastroenterological association institute technical review on the role of therapeutic drug monitoring in the management of inflammatory bowel disease. Gastroenterology. 2017;153(3):835–57.

    Google Scholar 

  33. •• Lamb CA, Kennedy NA, Raine T, et al. British society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(suppl 3):s1–s106 A large systematic review which recommends holding thiopurine therapy if LFTs become newly abnormal until resolution of the lab abnormalities.

    PubMed  PubMed Central  Google Scholar 

  34. Vasudevan A, Beswick L, Friedman AB, Moltzen A, Haridy J, Raghunath A, et al. Low-dose thiopurine with allopurinol co-therapy overcomes thiopurine intolerance and allows thiopurine continuation in inflammatory bowel disease. Dig Liver Dis. 2018;50(7):682–8.

    CAS  PubMed  Google Scholar 

  35. Meijer B, Seinen M, Egmond R, et al. Optimizing thiopurine therapy in inflammatory bowel disease among 2 real-life intercept cohorts: effect of allopurinol comedication. Inflamm Bowel Dis. 2017;23(11):2011–7.

    PubMed  PubMed Central  Google Scholar 

  36. Kreijne J, deVeer R, DeBoer, et al. Real-life study of safety of thiopurine-allopurinol combination therapy in inflammatory bowel disease: myelotoxicity and hepatotoxicity rarely affect maintenance treatment. Aliment Pharmacol Ther 2019; 50(4): 407–415.

  37. Chan E, Cronstein B. Methotrexate—how does it really work. Nat Rev Rheumatol. 2010;6(3):175–8.

    CAS  PubMed  Google Scholar 

  38. Tran-Minh M, Sousa P, Maillet M, et al. Hepatic complications induced by immunosuppressants and biologics in inflammatory bowel disease. World J Hepatol. 2017;9(13):613–26.

    PubMed  PubMed Central  Google Scholar 

  39. Lewis JH, Schiff E. Methotrexate-induced chronic liver injury: guidelines for detection and prevention. The ACG committee on FDA-related matters. American college of gastroenterology. Am J Gastroenterol. 1988;83(12):1337–45.

    CAS  PubMed  Google Scholar 

  40. Khan N, Abbas A, Whang N, et al. Incidence of liver toxicity in inflammatory bowel disease patients treated with methotrexate: a meta-analysis of clinical trials. Inflamm Bowel Dis. 2012;18(2):359–67.

    PubMed  Google Scholar 

  41. Saibeni S, Bollani S, Losco A, et al. The use of methotrexate for treatment of inflammatory bowel disease in clinical practice. Dig Liver Dis. 2017;44(2):123–7.

    Google Scholar 

  42. FDA. Highlights of prescribing information: Methotrexate tablets. 2016. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/008085s066lbl.pdf. 5 Apr 2020.

  43. Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. World J Hepatol. 2017;9(26):1092–100.

    PubMed  PubMed Central  Google Scholar 

  44. Labadie JG, Jain M. Noninvasive tests to monitor for methotrexate-induced liver injury. Clinical Liver Disease. 2019;13(3):67–71.

    PubMed  PubMed Central  Google Scholar 

  45. Herfarth HH, Kappelman MD, Long MD, Isaacs KL. Use of methotrexate in the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(1):224–33.

    PubMed  PubMed Central  Google Scholar 

  46. Ledder O, Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24(8):1676–88.

    PubMed  Google Scholar 

  47. Pardi DS, D’Haens G, Shen B, et al. Clinical guidelines for the management of pouchitis. Inflamm Bowel Dis. 2009;15(9):1424–31.

    PubMed  Google Scholar 

  48. Davis R, Markham A, Balfour JA. Ciprofloxacin. Ciprofloxacin Drugs. 1996;51(6):1019–74.

    CAS  PubMed  Google Scholar 

  49. Radovanovic M, Dushenkovska T, Cvorovic I, Radovanovic N, Ramasamy V, Milosavljevic K, et al. Idiosyncratic drug-induced liver injury due to ciprofloxacin: a report of two cases and review of the literature. Am J Case Rep. 2018;19:1152–61.

    PubMed  PubMed Central  Google Scholar 

  50. Grassmick BK, Lehr VT, Sundareson AS. Fulminant hepatic failure possibly related to ciprofloxacin. Ann Pharmacother. 1992;26(5):636–9.

    CAS  PubMed  Google Scholar 

  51. Orman ES, Conjeevaram HS, Freston JW, et al. Clinical and histopathological features of fluoroquinolone-induced liver injury. CGH. 2011;9(6):517–23.

    Google Scholar 

  52. de Silva HJ, Millard PR, Soper N, Kettlewell M, Mortensen N, Jewell DP. Effects of the faecal stream and stasis on the ileal pouch mucosa. Gut. 1991;32:1166–9.

    PubMed  PubMed Central  Google Scholar 

  53. Thia KT, Mahadevan U, Feagan BG, Wong C, Cockeram A, Bitton A, et al. Ciprofloxacin or metronidazole for the treatment of perianal fistulas in patients with Crohn’s disease: a randomized, double-blind, placebo-controlled pilot study. Inflamm Bowel Dis. 2009;15(1):17–24.

    PubMed  Google Scholar 

  54. LiverTox: CMetronidazole. linical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. [Updated 2020 Feb 20]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548609/

  55. Levin AD, Wildenberg ME, van den Brink GR. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J Crohn’s Colitis. 2016;10(8):989–97.

    Google Scholar 

  56. Rutgeerts P, Van Assche G, Vermeire S. Review article: infliximab therapy for inflammatory bowel disease--seven years on. Aliment Pharmacol Ther. 2006;23(4):451–63.

    CAS  PubMed  Google Scholar 

  57. Hoentjen F, van Bodegraven AA. Safety of anti-tumor necrosis factor therapy in inflammatory bowel disease. World J Gastroenterol. 2009;15(17):2067–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. •• Shah P, Sundaram V. Bjornsson, Biologic and Checkpoint Inhibitor-Induced liver Injury: A Systematic Literature Review. Hepatology Communications. 2020;4(2):172–84 Comprehensive recent systematic review on DILI caused by various biologic agents that are used to treat IBD, organized by MOA. Of note, the FDA issued a drug warning in 2004 due to 130 reported cases of liver injury caused by IFX, which was disproportionate to other TNF-inhibitors.

    PubMed  PubMed Central  Google Scholar 

  59. Menghini VV, Arora AS. Infliximab-associated reversible cholestatic liver disease. Mayo Clin Proc. 2001;76(1):84–6.

    CAS  PubMed  Google Scholar 

  60. • Koller T, Galambosova M, Filakovska S, et al. Drug-induced liver injury in inflammatory bowel disease: 1-year prospective observational study. World J Gastroenterol. 2017;23(22):4102–11 Prospective study looking at DILI in BD patients on various therapies. Authors found that hepatocellular injury, although mild and transient, was associated with patients having higher BMI, hepatic steatosis, longer duration of IBD, and receiving treatment with infliximab monotherapy on multivariate analysis.

    PubMed  PubMed Central  Google Scholar 

  61. Parisi I, O’Beirne J, Rossi R, et al. Elevated liver enzymes in inflammatory bowel disease: the role and safety on infliximab. Eur J Gastroenterol Hepatol. 2016;28(7):786–91.

    CAS  PubMed  Google Scholar 

  62. Subramaniam K, Chitturi S, Brown M, Pavli P. Infliximab-induced autoimmune hepatitis in Crohn’s disease treated with budesonide and mycophenolate. Inflamm Bowel Dis. 2011;17(11):E149–50.

    CAS  PubMed  Google Scholar 

  63. Rodrigues S, Lopes S, Magro F, Cardoso H, Horta e Vale AM, Marques M, et al. Autoimmune hepatitis and anti-tumor necrosis factor alpha therapy: a single center report of 8 cases. World J Gastroenterol. 2015;21(24):7584–8.

    PubMed  PubMed Central  Google Scholar 

  64. Goldfeld DA, Verna EC, Lefkowitch J, et al. Infliximab-induced autoimmune hepatitis with successful switch to adalimumab in a patient with Crohn’s disease: the index. Case Dig Dis Sci. 2011;56(11):3386–8.

    PubMed  Google Scholar 

  65. Wong F, Ibrahim BA, Walsh J, Qumosani K. Infliximab-induced autoimmune hepatitis requiring liver transplantation. Clinical Case Reports. 2019;7(11):2135–9.

    PubMed  PubMed Central  Google Scholar 

  66. Hahn L, Asmussen D, Benson J. Drug induced-hepatotoxicity with concurrent use of adalimumab and mesalamine for the treatment of Crohn’s disease. Gastroenterology and Hepatology. 2015;2(2):1–4.

    CAS  Google Scholar 

  67. • Adar T, Mizrahi M, Pappo O, et al. Adalimumab-induced autoimmune hepatitis. J. Clin. Gastroenterol. 2010;44(1):e20–2 First case report published to describe case of AIH caused by adalimumab that improved with discontinuation of drug and a course of steroids.

    PubMed  Google Scholar 

  68. Grasland A, Sterpu R, Boussoukaya S, Mahe I. Autoimmune hepatitis induced by adalimumab with successful switch to abatacept. Eur J Clin Pharmacol. 2012;68(5):895–8.

    CAS  PubMed  Google Scholar 

  69. Kavanaugh A, Husni ME, Harrison DD, Kim L, Lo KH, Leu JH, et al. Safety and efficacy of intravenous golimumab in patients with active psoriatic arthritis. Arthritis Rheumatol. 2017;69(11):2151–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ling C, Gavin M, Hanson J, McCarthy DM. Progressive epigastric pain with abnormal liver tests in a patient with Crohn’s disease: Don’t DILI dally. Dig Dis Sci. 2018;63(7):1751–5.

    PubMed  Google Scholar 

  71. Miehsler W, Novacek G, Wenzl H, Vogelsang H, Knoflach P, Kaser A, et al. A decade of infliximab: the Austrian evidence-based consensus on the safe use of infliximab in inflammatory bowel disease. J Crohns Colitis. 2010;4(3):221–56.

    CAS  PubMed  Google Scholar 

  72. Perillo RP, Gish R, Falck-Ytter YT. American Gastroenterological Association Institute Technical Review on Prevention and Treatment of Hepatitis B Virus Reactivation During Immunosuppressive. Drug Therapy. 2015;148(1):221–44.

    Google Scholar 

  73. •• Loomba R, Liang TJ. Hepatitis B reactivation associated with immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions. Gastroenterology. 2017;152(6):1297–309 Updated review article encompassing current diagnosis and treatment modalities of Hepatitis B reactivation due to biologic therapy. TNF-i are considered high risk of potentiating HBV reactivation, particularly in HBsAg-positive patients.

    PubMed  PubMed Central  Google Scholar 

  74. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343(6176):1221–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Loomba R, Rowley A, Wesley R, Liang TJ, Hoofnagle JH, Pucino F, et al. Systematic review: the effect of preventive lamivudine on hepatitis B reactivation during chemotherapy. Ann Intern Med. 2008;148(7):519–28.

    PubMed  PubMed Central  Google Scholar 

  76. Rudrapatna VA, Velayos F. Biosimilars for the treatment of inflammatory bowel disease. Pract Gastroenterol. 2019;43(4):84–91.

    PubMed  PubMed Central  Google Scholar 

  77. Nakagawa T, Kobayashi T, Nishikawa K, et al. Infliximab biosimilar CT-P13 is interchangeable with its originator for patients with inflammatory bowel disease in real world practice. Intest Res. 2019;17(4):504–15.

    PubMed  PubMed Central  Google Scholar 

  78. “FDA approves Tysabri for Crohn’s disease”. Drugs.com, Jan 2008. https://www.drugs.com/newdrugs/fda-approves-tysabri-moderate-severe-crohn-s-801.html

  79. Keeley KA, Rivey MP, Allington DR. Natalizumab for the treatment of multiple sclerosis and Crohn’s disease. Ann Pharmacother 2005; 39(11): 1833–1843.z

  80. Bezabeh S, Flowers CM, Kortepeter C, Avigan M. Clinically significant liver injury in patients treated with natalizumab. Aliment Pharmacol Ther. 2010;31(9):1028–35.

    CAS  PubMed  Google Scholar 

  81. Lisotti A, Azzaroli F, Brillanti S, Mazzella G. Severe acute autoimmune hepatitis after natalizumab treatment. Dig Liver Dis. 2012;44(4):356–7.

    PubMed  Google Scholar 

  82. Hillen ME, Cook SD, Samanta A et al. Fatal acute liver failure with hepatitis B virus infection during natalizumab treatment in multiple sclerosis 2015; 2(2): 1–2.

  83. “FDA approves entyvio (vedolizumab) to treat ulcerative colitis and Crohn’s disease”. Drugs.com 20 May 2014. https://www.drugs.com/newdrugs/fda-approves-entyvio-vedolizumab-ulcerative-colitis-crohn-s-4040.html

  84. FDA. Highlights of prescribing information: Entyvio (Vedolizumab). 2014. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125476s000lbl.pdf. 5 Apr 2020.

  85. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. GEMINI 1 study group. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710.

    CAS  PubMed  Google Scholar 

  86. Stine JG, Wang J, Behm BW. Chronic cholestatic liver injury attributable to Vedolizumab. Journal of clinical and translational hepatology. 2016;4(3):277–80.

    PubMed  PubMed Central  Google Scholar 

  87. Benson JM, Peritt D, Scallon BJ et al. Discovery and mechanism of ustekinumab: a human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. 2011; 3(6): 535–545.

  88. Papp KA, Langley RG. Lebwohl et al. PHOENIX 2 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lance. 2008;371(9625):1675–84.

    CAS  Google Scholar 

  89. Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y, Friedman JR, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375:1946–60.

    CAS  PubMed  Google Scholar 

  90. FDA. Highlights of prescribing information: Stelara (ustekinumab). 2016. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761044lbl.pdf. 5 Apr 2020.

  91. • Ting SW, Chen YC, Huang YH. Risk of hepatitis B reactivation in patients with psoriasis on ustekinumab. Clin Drug Investig. 2018;38(9):873–80 Important study showing potential reactivation of hepatitis B in patients on ustekinumab; however, no reported episode of acute liver failure even with reactivation.

    CAS  PubMed  Google Scholar 

  92. Opel D, Economidi A, Chan D, Wasfi Y, Mistry S, Vergou T, et al. Two cases of hepatitis B in patients with moderate to severe psoriasis with ustekinumab. J Drugs Dermatol. 2012;11(12):1498–501.

    CAS  PubMed  Google Scholar 

  93. “Xeljanz Approval History”. Drugs.com. 2012. https://www.drugs.com/history/xeljanz.html

  94. Zhang J, Tsai TF, Lee, et al. The efficacy and safety of tofacitinib in Asian patients with moderate to severe chronic plaque psoriasis: a Phase 3, randomized, double-blind, placebo-controlled study. J Dermatol Sci. 2017;88(1):36–45.

    CAS  PubMed  Google Scholar 

  95. Valenzuela F, Korman NJ, Bissonnette R, Bakos N, Tsai TF, Harper MK, et al. Tofacitinib in patients with moderate to severe chronic plaque psoriasis: long-term safety and efficacy in an open-label extension study. Br J Dermatol. 2018;179(4):853–62.

    CAS  PubMed  Google Scholar 

  96. Gupta P, Alvey C, Wang R, Dowty ME, Fahmi OA, Walsky RL, et al. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: confirmation of in vitro data. Br J Clin Pharmacol. 2012;74(1):109–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wollenhaupt J, Silverfield J, Lee EB, Curtis JR, Wood SP, Soma K, et al. Safety and efficacy of Tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol. 2014;41(5):837–52.

    CAS  PubMed  Google Scholar 

  98. Rigby WF, Lampl K, Low JM, et al. Review of routine laboratory monitoring for patients with rheumatoid arthritis receiving biologic or nonbiologic DMARDs. Int J Rheumatol. 2017;2017:9614241.

    PubMed  PubMed Central  Google Scholar 

  99. FDA. Highlights of prescribing information: Xeljanz (tofacitinib). 2012. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/203214s024,208246s010lbl.pdf. 5 Apr 2020.

  100. Chen YM, Huang WN, Wu YD, Lin CT, Chen YH, Chen DY, et al. Reactivation of hepatitis B virus infection in patients with rheumatoid arthritis receiving tofacitinib: a real-world study. Ann Rheum Dis. 2018;77(5):780–2.

    CAS  PubMed  Google Scholar 

  101. FDA. Azulfidine (sulfasalazine tablets). 2009. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/007073s124lbl.pdf. 6 Apr 2020.

  102. FDA. Imuran (azathioprine). 2018. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/016324s039lbl.pdf. 6 Apr 2020.

  103. FDA. Highlights of prescribing information: Purixan (mercaptopurine). 2014. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205919s000lbl.pdf. 6 Apr 2020.

  104. FDA. Highlights of prescribing information: Cipro (ciprofloxacin hydrochloride). 2016. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/019537s086lbl.pdf. 6 Apr 2020.

  105. FDA. Flagyl (metronidazole tablets). 2003. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/12623slr059_flagyl_lbl.pdf. 6 Apr 2020.

  106. FDA. Highlights of prescribing information: Remicade (infliximab). 2013. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103772s5359lbl.pdf. 6 Apr 2020.

  107. FDA. Highlights of prescribing information: Tysabri (natalizumab). 2012. Web. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125104s0576lbl.pdf. 6 Apr 2020.

  108. Perillo RP, Gish R, Falck-Ytter YT. American gastroenterological association institute technical review on preventions and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterol. 2015;148(1):221–44.

    Google Scholar 

  109. Pattullo V. Prevention of hepatitis B reactivation in the setting of immunosuppression. Clin Mol Hepatol. 2016;22(2):219–37.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept creation and paper Design: JJJ, JHL

Data acquisition, literature review: JJJ, MSB, JMS

Drafting and revision: JJJ, MSB, JMS, JHL

Final draft approval: JJJ, MSB, JMS, JHL

Corresponding author

Correspondence to Joseph J. Jennings.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Barnhill and Dr. Steinberg are joint first authors for this paper.

This article is part of the Topical Collection on Liver

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnhill, M.S., Steinberg, J.M., Jennings, J.J. et al. Hepatotoxicty of Agents Used in the Management of Inflammatory Bowel Disease: a 2020 Update. Curr Gastroenterol Rep 22, 47 (2020). https://doi.org/10.1007/s11894-020-00781-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-020-00781-3

Keywords

Navigation