Skip to main content

Advertisement

Log in

Modifiable Environmental Factors in Inflammatory Bowel Disease

  • Inflammatory Bowel Disease (S Hanauer, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Environmental factors may influence predisposition to develop inflammatory bowel diseases (Crohn’s disease, ulcerative colitis) or alter its natural history by modification of both the host immune response and intestinal microbial composition. The purpose of this review is to translate such evidence into clinical practice by a focus on interventional studies that have modified such environmental influences to improve disease outcomes.

Recent Findings

Several environmental influences have been identified in the recent literature including tobacco use, diet, antibiotics, vitamin D deficiency, stress, appendectomy, and oral contraceptive use. Some risk factors have similar influences on both Crohn’s disease and ulcerative colitis while others are disease-specific or have divergent effects.

Summary

Emerging epidemiologic evidence has confirmed the association of many of these factors with incident disease using prospective data. In addition, laboratory data has supported their mechanistic plausibility and relevance to intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Torres J, Mehandru S, Colombel JF, et al. Crohn’s disease. Lancet 2016.

  2. Ungaro R, Mehandru S, Allen PB, et al. Ulcerative colitis. Lancet 2016.

  3. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54 e42. quiz e30

    Article  PubMed  Google Scholar 

  5. Thia KT, Loftus Jr EV, Sandborn WJ, et al. An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol. 2008;103:3167–82.

    Article  PubMed  Google Scholar 

  6. Ray G. Inflammatory bowel disease in India—past, present and future. World J Gastroenterol. 2016;22:8123–36.

    Article  PubMed  PubMed Central  Google Scholar 

  7. •• Benchimol EI, Mack DR, Guttmann A, et al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study. Am J Gastroenterol. 2015;110:553–63. This study elegantly linked administrative data to immigration data demonstrating that second-generation immigrants had the same risk of developing IBD as native Caucasian Canadians.

    Article  PubMed  Google Scholar 

  8. Carr I, Mayberry JF. The effects of migration on ulcerative colitis: a three-year prospective study among Europeans and first- and second-generation South Asians in Leicester (1991-1994). Am J Gastroenterol. 1999;94:2918–22.

    CAS  PubMed  Google Scholar 

  9. Loftus Jr EV. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–17.

    Article  PubMed  Google Scholar 

  10. Monick MM, Powers LS, Walters K, et al. Identification of an autophagy defect in smokers’ alveolar macrophages. J Immunol. 2010;185:5425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benjamin JL, Hedin CR, Koutsoumpas A, et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012;18:1092–100.

    Article  PubMed  Google Scholar 

  12. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quevrain E, Maubert MA, Michon C, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65:415–25.

    Article  CAS  PubMed  Google Scholar 

  14. •• Bergeron V, Grondin V, Rajca S, et al. Current smoking differentially affects blood mononuclear cells from patients with Crohn’s disease and ulcerative colitis: relevance to its adverse role in the disease. Inflamm Bowel Dis. 2012;18:1101–11. This important study demonstrated a differential effect of cigarette smoking on mononuclear cells in Crohn’s disease or ulcerative colitis, thereby providing support for the divergent effects of cigarette smoke on established disease.

    Article  PubMed  Google Scholar 

  15. To N, Gracie DJ, Ford AC. Systematic review with meta-analysis: the adverse effects of tobacco smoking on the natural history of Crohn’s disease. Aliment Pharmacol Ther. 2016;43:549–61.

    Article  CAS  PubMed  Google Scholar 

  16. Nunes T, Etchevers MJ, Garcia-Sanchez V, et al. Impact of smoking cessation on the clinical course of Crohn’s disease under current therapeutic algorithms: a multicenter prospective study. Am J Gastroenterol. 2016;111:411–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cosnes J, Carbonnel F, Beaugerie L, et al. Effects of cigarette smoking on the long-term course of Crohn’s disease. Gastroenterology. 1996;110:424–31.

    Article  CAS  PubMed  Google Scholar 

  18. Nunes T, Etchevers MJ, Merino O, et al. Does smoking influence Crohn’s disease in the biologic era? The TABACROHN study. Inflamm Bowel Dis. 2013;19:23–9.

    Article  PubMed  Google Scholar 

  19. Seksik P, Nion-Larmurier I, Sokol H, et al. Effects of light smoking consumption on the clinical course of Crohn’s disease. Inflamm Bowel Dis. 2009;15:734–41.

    Article  PubMed  Google Scholar 

  20. Lakatos PL, Vegh Z, Lovasz BD, et al. Is current smoking still an important environmental factor in inflammatory bowel diseases? Results from a population-based incident cohort. Inflamm Bowel Dis. 2013;19:1010–7.

    Article  PubMed  Google Scholar 

  21. Arnott ID, McNeill G, Satsangi J. An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn’s disease. Aliment Pharmacol Ther. 2003;17:1451–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lindberg E, Jarnerot G, Huitfeldt B. Smoking in Crohn’s disease: effect on localisation and clinical course. Gut. 1992;33:779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Picco MF, Bayless TM. Tobacco consumption and disease duration are associated with fistulizing and stricturing behaviors in the first 8 years of Crohn’s disease. Am J Gastroenterol. 2003;98:363–8.

    Article  PubMed  Google Scholar 

  24. Nunes T, Etchevers MJ, Domenech E, et al. Smoking does influence disease behaviour and impacts the need for therapy in Crohn’s disease in the biologic era. Aliment Pharmacol Ther. 2013;38:752–60.

    Article  CAS  PubMed  Google Scholar 

  25. Sutherland LR, Ramcharan S, Bryant H, et al. Effect of cigarette smoking on recurrence of Crohn’s disease. Gastroenterology. 1990;98:1123–8.

    Article  CAS  PubMed  Google Scholar 

  26. Cosnes J, Beaugerie L, Carbonnel F, et al. Smoking cessation and the course of Crohn’s disease: an intervention study. Gastroenterology. 2001;120:1093–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nunes T, Etchevers MJ, Merino O, et al. High smoking cessation rate in Crohn’s disease patients after physician advice—the TABACROHN study. J Crohns Colitis. 2013;7:202–7.

    Article  PubMed  Google Scholar 

  28. Higuchi LM, Khalili H, Chan AT, et al. A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am J Gastroenterol. 2012;107:1399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  29. van der Heide F, Dijkstra A, Weersma RK, et al. Effects of active and passive smoking on disease course of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2009;15:1199–207.

    Article  PubMed  Google Scholar 

  30. Beaugerie L, Massot N, Carbonnel F, et al. Impact of cessation of smoking on the course of ulcerative colitis. Am J Gastroenterol. 2001;96:2113–6.

    Article  CAS  PubMed  Google Scholar 

  31. Boyko EJ, Perera DR, Koepsell TD, et al. Effects of cigarette smoking on the clinical course of ulcerative colitis. Scand J Gastroenterol. 1988;23:1147–52.

    Article  CAS  PubMed  Google Scholar 

  32. McGrath J, McDonald JW, Macdonald JK. Transdermal nicotine for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 2004:CD004722.

  33. Calabrese E, Yanai H, Shuster D, et al. Low-dose smoking resumption in ex-smokers with refractory ulcerative colitis. J Crohns Colitis. 2012;6:756–62.

    Article  PubMed  Google Scholar 

  34. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 2014;40:833–42.

    Article  CAS  PubMed  Google Scholar 

  35. Richards JL, Yap YA, McLeod KH, et al. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunology. 2016;5:e82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  39. •• Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92. This landmark study elegantly described changes in the microbiome in newly diagnosed pediatric Crohn’s disease and alterations in functional pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Navarro J, Vargas J, Cezard JP, et al. Prolonged constant rate elemental enteral nutrition in Crohn’s disease. J Pediatr Gastroenterol Nutr. 1982;1:541–6.

    Article  CAS  PubMed  Google Scholar 

  41. Sanderson IR, Udeen S, Davies PS, et al. Remission induced by an elemental diet in small bowel Crohn’s disease. Arch Dis Child. 1987;62:123–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zachos M, Tondeur, M. & Griffiths, A. M.. Enteral nutritional therapy for induction of remission in Crohn’s disease.

  43. Dziechciarz P, Horvath A, Shamir R, et al. Meta-analysis: enteral nutrition in active Crohn’s disease in children. Aliment Pharmacol Ther. 2007;26:795–806.

    Article  CAS  PubMed  Google Scholar 

  44. Heuschkel RB, Menache CC, Megerian JT, et al. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. J Pediatr Gastroenterol Nutr. 2000;31:8–15.

    Article  CAS  PubMed  Google Scholar 

  45. Grogan JL, Casson DH, Terry A, et al. Enteral feeding therapy for newly diagnosed pediatric Crohn’s disease: a double-blind randomized controlled trial with two years follow-up. Inflamm Bowel Dis. 2012;18:246–53.

    Article  PubMed  Google Scholar 

  46. Hirai F, Ishihara H, Yada S, et al. Effectiveness of concomitant enteral nutrition therapy and infliximab for maintenance treatment of Crohn’s disease in adults. Dig Dis Sci. 2013;58:1329–34.

    Article  CAS  PubMed  Google Scholar 

  47. Lee D, Baldassano RN, Otley AR, et al. Comparative effectiveness of nutritional and biological therapy in North American children with active Crohn’s disease. Inflamm Bowel Dis. 2015;21:1786–93.

    Article  PubMed  Google Scholar 

  48. Kim HJ, Kim Y, Cho JM, et al. Therapeutic efficacy of oral enteral nutrition in pediatric Crohn’s disease: a single center non-comparative retrospective study. Yonsei Med J. 57:1185–91.

  49. Haas SV, Haas MP. The treatment of celiac disease with the specific carbohydrate diet; report on 191 additional cases. Am J Gastroenterol. 1955;23:344–60.

    CAS  PubMed  Google Scholar 

  50. E. G. Breaking the vicious cycle: intestinal health through diet. Baltimore, Canada:: Kirkton Press

  51. Cohen SA, Gold BD, Oliva S, et al. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2014;59:516–21.

    Article  CAS  PubMed  Google Scholar 

  52. Obih C, Wahbeh G, Lee D, et al. Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center. Nutrition. 2016;32:418–25.

    Article  PubMed  Google Scholar 

  53. Sigall-Boneh R, Pfeffer-Gik T, Segal I, et al. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 2014;20:1353–60.

    Article  PubMed  Google Scholar 

  54. Rajendran N, Kumar D. Food-specific IgG4-guided exclusion diets improve symptoms in Crohn’s disease: a pilot study. Color Dis. 2011;13:1009–13.

    Article  CAS  Google Scholar 

  55. Gunasekeera V, Mendall MA, Chan D, et al. Treatment of Crohn’s disease with an IgG4-guided exclusion diet: a randomized controlled trial. Dig Dis Sci. 2016;61:1148–57.

    Article  CAS  PubMed  Google Scholar 

  56. Brown AC, Rampertab SD, Mullin GE. Existing dietary guidelines for Crohn’s disease and ulcerative colitis. Expert Rev Gastroenterol Hepatol. 2011;5:411–25.

    Article  PubMed  Google Scholar 

  57. Pituch-Zdanowska A, Banaszkiewicz A, Albrecht P. The role of dietary fibre in inflammatory bowel disease. Prz Gastroenterol. 2015;10:135–41.

    PubMed  PubMed Central  Google Scholar 

  58. Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147:629–40.

    Article  CAS  PubMed  Google Scholar 

  59. Parigi SM, Eldh M, Larssen P, et al. Breast milk and solid food shaping intestinal immunity. Front Immunol. 2015;6:415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Monteleone I, MacDonald TT, Pallone F, et al. The aryl hydrocarbon receptor in inflammatory bowel disease: linking the environment to disease pathogenesis. Curr Opin Gastroenterol. 2012;28:310–3.

    Article  CAS  PubMed  Google Scholar 

  61. Joossens M, De Preter V, Ballet V, et al. Effect of oligofructose-enriched inulin (OF-IN) on bacterial composition and disease activity of patients with Crohn’s disease: results from a double-blinded randomised controlled trial. Gut. 2012;61:958.

    Article  PubMed  Google Scholar 

  62. Ananthakrishnan AN, Khalili H, Konijeti GG, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145:970–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106:563–73.

    Article  CAS  PubMed  Google Scholar 

  64. Brotherton CS, Martin CA, Long MD, et al. Avoidance of fiber is associated with greater risk of Crohn’s disease flare in a 6-month period. Clin Gastroenterol Hepatol. 2016;14:1130–6.

    Article  PubMed  Google Scholar 

  65. Faghfoori Z, Shakerhosseini R, Navai L, et al. Effects of an oral supplementation of germinated barley foodstuff on serum CRP level and clinical signs in patients with ulcerative colitis. Health Promot Perspect. 2014;4:116–21.

    PubMed  PubMed Central  Google Scholar 

  66. Wedlake L, Slack N, Andreyev HJ, et al. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis. 2014;20:576–86.

    Article  PubMed  Google Scholar 

  67. Denis MC, Roy D, Yeganeh PR, et al. Apple peel polyphenols: a key player in the prevention and treatment of experimental inflammatory bowel disease. Clin Sci (Lond). 2016;130:2217–37.

    Article  Google Scholar 

  68. John S, Luben R, Shrestha SS, et al. Dietary n-3 polyunsaturated fatty acids and the aetiology of ulcerative colitis: a UK prospective cohort study. Eur J Gastroenterol Hepatol. 2010;22:602–6.

    Article  CAS  PubMed  Google Scholar 

  69. Ananthakrishnan AN, Khalili H, Konijeti GG, et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut. 2014;63:776–84.

    Article  CAS  PubMed  Google Scholar 

  70. Wall R, Ross RP, Fitzgerald GF, et al. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68:280–9.

    Article  PubMed  Google Scholar 

  71. Lev-Tzion R, Griffiths AM, Leder O, et al. Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 2014:CD006320.

  72. Feagan BG, Sandborn WJ, Mittmann U, et al. Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC randomized controlled trials. JAMA. 2008;299:1690–7.

    Article  CAS  PubMed  Google Scholar 

  73. Farrukh A, Mayberry JF. Is there a role for fish oil in inflammatory bowel disease? World J Clin Cases. 2014;2:250–2.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hawthorne AB, Daneshmend TK, Hawkey CJ, et al. Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month randomised controlled trial. Gut. 1992;33:922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stenson WF, Cort D, Rodgers J, et al. Dietary supplementation with fish oil in ulcerative colitis. Ann Intern Med. 1992;116:609–14.

    Article  CAS  PubMed  Google Scholar 

  76. Aslan A, Triadafilopoulos G. Fish oil fatty acid supplementation in active ulcerative colitis: a double-blind, placebo-controlled, crossover study. Am J Gastroenterol. 1992;87:432–7.

    CAS  PubMed  Google Scholar 

  77. Dichi I, Frenhane P, Dichi JB, et al. Comparison of omega-3 fatty acids and sulfasalazine in ulcerative colitis. Nutrition. 2000;16:87–90.

    Article  CAS  PubMed  Google Scholar 

  78. Benjamin J, Makharia G, Ahuja V, et al. Glutamine and whey protein improve intestinal permeability and morphology in patients with Crohn’s disease: a randomized controlled trial. Dig Dis Sci. 2012;57:1000–12.

    Article  CAS  PubMed  Google Scholar 

  79. Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci. 2005;50:2191–3.

    Article  PubMed  Google Scholar 

  80. Singla V, Pratap Mouli V, Garg SK, et al. Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis—a randomized, placebo-controlled, pilot study. J Crohns Colitis. 2014;8:208–14.

    Article  PubMed  Google Scholar 

  81. Lang A, Salomon N, Wu JC, et al. Curcumin in combination with mesalamine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial. Clin Gastroenterol Hepatol. 2015;13:1444–9. e1

    Article  CAS  PubMed  Google Scholar 

  82. Muluye RA, Bian Y, Alemu PN. Anti-inflammatory and antimicrobial effects of heat-clearing Chinese herbs: a current review. J Tradit Complement Med. 2014;4:93–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tang T, Targan SR, Li ZS, et al. Randomised clinical trial: herbal extract HMPL-004 in active ulcerative colitis—a double-blind comparison with sustained release mesalazine. Aliment Pharmacol Ther. 2011;33:194–202.

    Article  CAS  PubMed  Google Scholar 

  84. Sandborn WJ, Targan SR, Byers VS, et al. Andrographis paniculata extract (HMPL-004) for active ulcerative colitis. Am J Gastroenterol. 2013;108:90–8.

    Article  PubMed  Google Scholar 

  85. Bar-Sela G, Cohen M, Ben-Arye E, et al. The medical use of wheatgrass: review of the gap between basic and clinical applications. Mini Rev Med Chem. 2015;15:1002–10.

    Article  CAS  PubMed  Google Scholar 

  86. Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2015;18:576–81.

    Article  CAS  PubMed  Google Scholar 

  87. Hwang C, Ross V, Mahadevan U. Micronutrient deficiencies in inflammatory bowel disease: from A to zinc. Inflamm Bowel Dis. 2012;18:1961–81.

    Article  PubMed  Google Scholar 

  88. Torki M, Gholamrezaei A, Mirbagher L, et al. Vitamin D deficiency associated with disease activity in patients with inflammatory bowel diseases. Dig Dis Sci. 2015;60:3085–91.

    Article  CAS  PubMed  Google Scholar 

  89. Del Pinto R, Pietropaoli D, Chandar AK, et al. Association between inflammatory bowel disease and vitamin D deficiency: a systematic review and meta-analysis. Inflamm Bowel Dis. 2015;21:2708–17.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Frigstad SO, Hoivik M, Jahnsen J, et al. Vitamin D deficiency in inflammatory bowel disease: prevalence and predictors in a Norwegian outpatient population. Scand J Gastroenterol 2016:1–7.

  91. Ananthakrishnan AN, Cagan A, Gainer VS, et al. Normalization of plasma 25-hydroxy vitamin D is associated with reduced risk of surgery in Crohn’s disease. Inflamm Bowel Dis. 2013;19:1921–7.

    PubMed  PubMed Central  Google Scholar 

  92. Ananthakrishnan AN, Cagan A, Gainer VS, et al. Higher plasma vitamin D is associated with reduced risk of Clostridium difficile infection in patients with inflammatory bowel diseases. Aliment Pharmacol Ther. 2014;39:1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gubatan J, Mitsuhashi S, Zenlea T, et al. Low serum vitamin D during remission increases risk of clinical relapse in patients with ulcerative colitis. Clin Gastroenterol Hepatol 2016.

  94. Martinesi M, Treves C, d’Albasio G, et al. Vitamin D derivatives induce apoptosis and downregulate ICAM-1 levels in peripheral blood mononuclear cells of inflammatory bowel disease patients. Inflamm Bowel Dis. 2008;14:597–604.

    Article  PubMed  Google Scholar 

  95. Stio M, Bonanomi AG, d’Albasio G, et al. Suppressive effect of 1,25-dihydroxyvitamin D3 and its analogues EB 1089 and KH 1060 on T lymphocyte proliferation in active ulcerative colitis. Biochem Pharmacol. 2001;61:365–71.

    Article  CAS  PubMed  Google Scholar 

  96. Cantorna MT, Mahon BD. D-hormone and the immune system. J Rheumatol Suppl. 2005;76:11–20.

    CAS  PubMed  Google Scholar 

  97. Raman M, Milestone AN, Walters JR, et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol. 2011;4:49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boonstra A, Barrat FJ, Crain C, et al. 1alpha,25-dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167:4974–80.

    Article  CAS  PubMed  Google Scholar 

  99. Alhassan Mohammed H, Saboor-Yaraghi AA, Mirshafiey A, et al. Immunomodulatory and immunosuppressive roles of 1alpha,25(OH)2D3 in autoimmune diseases. Scand J Immunol 2016.

  100. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3.

    Article  CAS  PubMed  Google Scholar 

  101. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19:1067–77.

    Article  CAS  PubMed  Google Scholar 

  102. Jorgensen SP, Agnholt J, Glerup H, et al. Clinical trial: vitamin D3 treatment in Crohn’s disease—a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther. 2010;32:377–83.

    Article  CAS  PubMed  Google Scholar 

  103. Narula N, Cooray M, Anglin R, et al. Impact of high-dose vitamin D3 supplementation in patients with Crohn’s disease in remission: a pilot randomized double-blind controlled study. Dig Dis Sci 2016.

  104. Sharifi A, Hosseinzadeh-Attar MJ, Vahedi H, et al. A randomized controlled trial on the effect of vitamin D3 on inflammation and cathelicidin gene expression in ulcerative colitis patients. Saudi J Gastroenterol. 2016;22:316–23.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sunuwar L, Medini M, Cohen L, et al. The zinc sensing receptor, ZnR/GPR39, triggers metabotropic calcium signalling in colonocytes and regulates occludin recovery in experimental colitis. Philos Trans R Soc Lond B Biol Sci 2016;371.

  106. Bao B, Prasad AS, Beck FW, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 2010;91:1634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barollo M, Medici V, D’Inca R, et al. Antioxidative potential of a combined therapy of anti TNFalpha and Zn acetate in experimental colitis. World J Gastroenterol. 2011;17:4099–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ananthakrishnan AN, Khalili H, Song M, et al. Zinc intake and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Int J Epidemiol. 2015;44:1995–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Siva S, Rubin DT, Gulotta G, et al. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm Bowel Dis 2016.

  110. Sturniolo GC, Di Leo V, Ferronato A, et al. Zinc supplementation tightens "leaky gut" in Crohn’s disease. Inflamm Bowel Dis. 2001;7:94–8.

    Article  CAS  PubMed  Google Scholar 

  111. Ananthakrishnan AN, Khalili H, Pan A, et al. Association between depressive symptoms and incidence of Crohn’s disease and ulcerative colitis: results from the Nurses’ Health Study. Clin Gastroenterol Hepatol. 2013;11:57–62.

    Article  PubMed  Google Scholar 

  112. Lerebours E, Gower-Rousseau C, Merle V, et al. Stressful life events as a risk factor for inflammatory bowel disease onset: a population-based case-control study. Am J Gastroenterol. 2007;102:122–31.

    Article  PubMed  Google Scholar 

  113. Ghia JE, Blennerhassett P, Deng Y, et al. Reactivation of inflammatory bowel disease in a mouse model of depression. Gastroenterology. 2009;136:2280–2288.e1-4.

    Article  CAS  PubMed  Google Scholar 

  114. Bailey MT, Dowd SE, Galley JD, et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25:397–407.

    Article  CAS  PubMed  Google Scholar 

  115. Watanabe Y, Arase S, Nagaoka N, et al. Chronic psychological stress disrupted the composition of the murine colonic microbiota and accelerated a murine model of inflammatory bowel disease. PLoS One. 2016;11:e0150559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Singh S, Graff LA, Bernstein CN. Do NSAIDs, antibiotics, infections, or stress trigger flares in IBD? Am J Gastroenterol. 2009;104:1298–313. quiz 1314

    Article  CAS  PubMed  Google Scholar 

  117. Gaines LS, Slaughter JC, Horst SN, et al. Association between affective-cognitive symptoms of depression and exacerbation of Crohn’s disease. Am J Gastroenterol. 2016;111:864–70.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Persoons P, Vermeire S, Demyttenaere K, et al. The impact of major depressive disorder on the short- and long-term outcome of Crohn’s disease treatment with infliximab. Aliment Pharmacol Ther. 2005;22:101–10.

    Article  CAS  PubMed  Google Scholar 

  119. Bernstein CN, Singh S, Graff LA, et al. A prospective population-based study of triggers of symptomatic flares in IBD. Am J Gastroenterol. 2010;105:1994–2002.

    Article  PubMed  Google Scholar 

  120. Goodhand JR, Wahed M, Rampton DS. Management of stress in inflammatory bowel disease: a therapeutic option? Expert Rev Gastroenterol Hepatol. 2009;3:661–79.

    Article  PubMed  Google Scholar 

  121. Timmer A, Preiss JC, Motschall E, et al. Psychological interventions for treatment of inflammatory bowel disease. Cochrane Database Syst Rev 2011:CD006913.

  122. Szigethy E, Youk AO, Gonzalez-Heydrich J, et al. Effect of 2 psychotherapies on depression and disease activity in pediatric Crohn’s disease. Inflamm Bowel Dis. 2015;21:1321–8.

    PubMed  PubMed Central  Google Scholar 

  123. Szigethy E, Bujoreanu SI, Youk AO, et al. Randomized efficacy trial of two psychotherapies for depression in youth with inflammatory bowel disease. J Am Acad Child Adolesc Psychiatry. 2014;53:726–35.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gerbarg PL, Jacob VE, Stevens L, et al. The effect of breathing, movement, and meditation on psychological and physical symptoms and inflammatory biomarkers in inflammatory bowel disease: a randomized controlled trial. Inflamm Bowel Dis. 2015;21:2886–96.

    Article  PubMed  Google Scholar 

  125. McCombie A, Gearry R, Andrews J, et al. Does computerized cognitive behavioral therapy help people with inflammatory bowel disease? A randomized controlled trial. Inflamm Bowel Dis. 2016;22:171–81.

    Article  PubMed  Google Scholar 

  126. Schoultz M, Atherton I, Watson A. Mindfulness-based cognitive therapy for inflammatory bowel disease patients: findings from an exploratory pilot randomised controlled trial. Trials. 2015;16:379.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Thompson RD, Craig A, Crawford EA, et al. Longitudinal results of cognitive behavioral treatment for youths with inflammatory bowel disease and depressive symptoms. J Clin Psychol Med Settings. 2012;19:329–37.

    Article  PubMed  Google Scholar 

  128. Bennebroek Evertsz F, Bockting CL, Stokkers PC, et al. The effectiveness of cognitive behavioral therapy on the quality of life of patients with inflammatory bowel disease: multi-center design and study protocol (KL!C- study). BMC Psychiatry. 2012;12:227.

    Article  PubMed  Google Scholar 

  129. Vogelaar L, van’t Spijker A, Timman R, et al. Fatigue management in patients with IBD: a randomised controlled trial. Gut. 2014;63:911–8.

    Article  PubMed  Google Scholar 

  130. Mizrahi MC, Reicher-Atir R, Levy S, et al. Effects of guided imagery with relaxation training on anxiety and quality of life among patients with inflammatory bowel disease. Psychol Health. 2012;27:1463–79.

    Article  PubMed  Google Scholar 

  131. Jedel S, Hoffman A, Merriman P, et al. A randomized controlled trial of mindfulness-based stress reduction to prevent flare-up in patients with inactive ulcerative colitis. Digestion. 2014;89:142–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Berrill JW, Sadlier M, Hood K, et al. Mindfulness-based therapy for inflammatory bowel disease patients with functional abdominal symptoms or high perceived stress levels. J Crohns Colitis. 2014;8:945–55.

    Article  PubMed  Google Scholar 

  133. Daghaghzadeh H, Naji F, Afshar H, et al. Efficacy of duloxetine add on in treatment of inflammatory bowel disease patients: a double-blind controlled study. J Res Med Sci. 2015;20:595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Goodhand JR, Greig FI, Koodun Y, et al. Do antidepressants influence the disease course in inflammatory bowel disease? A retrospective case-matched observational study. Inflamm Bowel Dis. 2012;18:1232–9.

    Article  CAS  PubMed  Google Scholar 

  135. Ananthakrishnan AN, Khalili H, Konijeti GG, et al. Sleep duration affects risk for ulcerative colitis: a prospective cohort study. Clin Gastroenterol Hepatol. 2014;12:1879–86.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ananthakrishnan AN, Long MD, Martin CF, et al. Sleep disturbance and risk of active disease in patients with Crohn’s disease and ulcerative colitis. Clin Gastroenterol Hepatol. 2013;11:965–71.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ali T, Madhoun MF, Orr WC, et al. Assessment of the relationship between quality of sleep and disease activity in inflammatory bowel disease patients. Inflamm Bowel Dis. 2013;19:2440–3.

    Article  PubMed  Google Scholar 

  138. Esposito E, Mazzon E, Riccardi L, et al. Matrix metalloproteinase-9 and metalloproteinase-2 activity and expression is reduced by melatonin during experimental colitis. J Pineal Res. 2008;45:166–73.

    Article  CAS  PubMed  Google Scholar 

  139. Mazzon E, Esposito E, Crisafulli C, et al. Melatonin modulates signal transduction pathways and apoptosis in experimental colitis. J Pineal Res. 2006;41:363–73.

    Article  CAS  PubMed  Google Scholar 

  140. Esiringu F, Tugcu-Demiroz F, Acarturk F, et al. Investigation of the effect of intracolonic melatonin gel formulation on acetic acid-induced colitis. Drug Deliv. 2016;23:2318–26.

    CAS  PubMed  Google Scholar 

  141. Ananthakrishnan AN, Higuchi LM, Huang ES, et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med. 2012;156:350–9.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Long MD, Kappelman MD, Martin CF, et al. Role of nonsteroidal anti-inflammatory drugs in exacerbations of inflammatory bowel disease. J Clin Gastroenterol. 2016;50:152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Takeuchi K, Smale S, Premchand P, et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2006;4:196–202.

    Article  CAS  PubMed  Google Scholar 

  144. Sandborn WJ, Stenson WF, Brynskov J, et al. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled, pilot study. Clin Gastroenterol Hepatol. 2006;4:203–11.

    Article  CAS  PubMed  Google Scholar 

  145. Andersson RE, Olaison G, Tysk C, et al. Appendectomy is followed by increased risk of Crohn’s disease. Gastroenterology. 2003;124:40–6.

    Article  PubMed  Google Scholar 

  146. Kaplan GG, Jackson T, Sands BE, et al. The risk of developing Crohn’s disease after an appendectomy: a meta-analysis. Am J Gastroenterol. 2008;103:2925–31.

    Article  PubMed  Google Scholar 

  147. Matsushita M, Uchida K, Okazaki K. Role of the appendix in the pathogenesis of ulcerative colitis. Inflammopharmacology. 2007;15:154–7.

    Article  CAS  PubMed  Google Scholar 

  148. Andersson RE, Olaison G, Tysk C, et al. Appendectomy and protection against ulcerative colitis. N Engl J Med. 2001;344:808–14.

    Article  CAS  PubMed  Google Scholar 

  149. Naganuma M, Iizuka B, Torii A, et al. Appendectomy protects against the development of ulcerative colitis and reduces its recurrence: results of a multicenter case-controlled study in Japan. Am J Gastroenterol. 2001;96:1123–6.

    Article  CAS  PubMed  Google Scholar 

  150. Rachmilewitz D, Karmeli F, Takabayashi K, et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology. 2002;122:1428–41.

    Article  CAS  PubMed  Google Scholar 

  151. Matsushita M, Takakuwa H, Matsubayashi Y, et al. Appendix is a priming site in the development of ulcerative colitis. World J Gastroenterol. 2005;11:4869–74.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Cosnes J, Carbonnel F, Beaugerie L, et al. Effects of appendicectomy on the course of ulcerative colitis. Gut. 2002;51:803–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Parian A, Limketkai B, Koh J, et al. Appendectomy does not decrease the risk of future colectomy in UC: results from a large cohort and meta-analysis. Gut 2016.

  154. Jarnerot G, Andersson M, Franzen L. Laparoscopic appendectomy in patients with refractory ulcerative colitis. Gastroenterology. 2001;120:1562–3.

    Article  CAS  PubMed  Google Scholar 

  155. Gardenbroek TJ, Pinkney TD, Sahami S, et al. The ACCURE-trial: the effect of appendectomy on the clinical course of ulcerative colitis, a randomised international multicenter trial (NTR2883) and the ACCURE-UK trial: a randomised external pilot trial (ISRCTN56523019). BMC Surg. 2015;15:30.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Harper JW, Zisman TL. Interaction of obesity and inflammatory bowel disease. World J Gastroenterol. 2016;22:7868–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Khalili H, Ananthakrishnan AN, Konijeti GG, et al. Measures of obesity and risk of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2015;21:361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Harpsoe MC, Basit S, Andersson M, et al. Body mass index and risk of autoimmune diseases: a study within the Danish National Birth Cohort. Int J Epidemiol. 2014;43:843–55.

    Article  PubMed  Google Scholar 

  159. Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci 2016.

  160. Van Der Sloot KW, Joshi AD, Bellavance DR, et al. Visceral adiposity, genetic susceptibility, and risk of complications among individuals with Crohn’s disease. Inflamm Bowel Dis. 2017;23:82–8.

    Article  PubMed  Google Scholar 

  161. Seminerio JL, Koutroubakis IE, Ramos-Rivers C, et al. Impact of obesity on the management and clinical course of patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:2857–63.

    Article  PubMed  Google Scholar 

  162. Cornish JA, Tan E, Simillis C, et al. The risk of oral contraceptives in the etiology of inflammatory bowel disease: a meta-analysis. Am J Gastroenterol. 2008;103:2394–400.

    Article  PubMed  Google Scholar 

  163. Garcia Rodriguez LA, Gonzalez-Perez A, Johansson S, et al. Risk factors for inflammatory bowel disease in the general population. Aliment Pharmacol Ther. 2005;22:309–15.

    Article  CAS  PubMed  Google Scholar 

  164. Khalili H, Higuchi LM, Ananthakrishnan AN, et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut. 2013;62:1153–9.

    Article  CAS  PubMed  Google Scholar 

  165. Khalili H, Neovius M, Ekbom A, et al. Oral contraceptive use and risk of ulcerative colitis progression: a nationwide study. Am J Gastroenterol. 2016;111:1614–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Khalili H, Granath F, Smedby KE, et al. Association between long-term oral contraceptive use and risk of Crohn’s disease complications in a nationwide study. Gastroenterology. 2016;150:1561–1567 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin N. Ananthakrishnan.

Ethics declarations

Conflict of Interest

Ashwin Ananthakrishnan reports serving on scientific advisory boards for Abbvie, Takeda, and Merck, outside the submitted work. Christine Boumitri and Kristin Burke declare no conflict of interest.

Grant Support

Ashwin Ananthakrishnan is supported by funding from the US National Institutes of Health (K23 DK097142) and the Crohn’s and Colitis Foundation of America.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Topical Collection on Inflammatory Bowel Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, K.E., Boumitri, C. & Ananthakrishnan, A.N. Modifiable Environmental Factors in Inflammatory Bowel Disease. Curr Gastroenterol Rep 19, 21 (2017). https://doi.org/10.1007/s11894-017-0562-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-017-0562-0

Keywords

Navigation