Skip to main content

Advertisement

Log in

Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease

  • Microvascular Complications—Nephropathy (M Afkarian, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Diabetes mellitus is a major cause of kidney disease [chronic kidney disease (CKD) and end-stage renal disease (ESRD)] and are both characterized by an increased risk of cardiovascular events. Diabetes and kidney disease are also commonly associated with a chronic inflammatory state, which is now considered a non-traditional risk factor for atherosclerosis. In the case of type 2 diabetes mellitus (T2DM), inflammation is mainly a consequence of visceral obesity, while in the case of CKD or ESRD patients on dialysis, inflammation is caused by multiple factors, classically grouped as dialysis-related and non-dialysis-related. More recently, a key role has been credited to the intestinal microbiota in the pathogenesis of chronic inflammation present in both disease states. While many recent data on the intestinal microbiota and its relationship to chronic inflammation are available for CKD patients, very little is known regarding T2DM and patients with diabetic nephropathy. The aim of this review is to summarize and discuss the main pathophysiological issues of intestinal microbiota in patients with T2DM and CKD/ESRD.

Recent Findings

The presence of intestinal dysbiosis, along with increased intestinal permeability and high circulating levels of lipopolysaccharides, a condition known as “endotoxemia,” characterize T2DM, CKD, and ESRD on dialysis. The hallmark of intestinal dysbiosis is a reduction of saccharolytic microbes mainly producing short-chain fatty acids (SCFA) and, in the case of CKD/ESRD, an increase in proteolytic microbes that produce different substances possibly related to uremic toxicity.

Summary

Dysbiosis is associated with endotoxemia and chronic inflammation, with disruption of the intestinal barrier and depletion of beneficial bacteria producing SCFAs. T2DM and CKD/ESRD, whose coexistence is increasingly found in clinical practice, share similar negative effects on both intestinal microbiota and function. More studies are needed to characterize specific alterations of the intestinal microbiota in diabetic nephropathy and to assess possible effects of probiotic and prebiotic treatments in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO. Global status report on noncommunicable diseases 2014. World Health Organization. 2014; 176.

  2. Johnson AMF, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152:673–84.

    Article  CAS  PubMed  Google Scholar 

  3. Tilg H, Moschen A. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med. 2008;14:222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. American Diabetes Association. National Diabetes Statistics Report: 2014 Estimates of Diabetes and Its Burden in the Epidemiologic estimation methods. Natl Diabetes Stat Rep. 2014; 2009–2012.

  5. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJL, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–52.

    Article  PubMed  Google Scholar 

  6. 2013 USRDS Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Am J Kidney Dis 2014; 63: supplement e1–e478.

  7. Carrero JJ, Stenvinkel P. Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol. 2009;4:S49–55.

    Article  CAS  PubMed  Google Scholar 

  8. Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol. 2008;3:505–21.

    Article  CAS  PubMed  Google Scholar 

  9. Honda H, Qureshi AR, Heimburger O, Barany P, Wang K, et al. Serum albumin, C-reactive protein, interleukin-6, and fetuin A as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47:139–48.

    Article  CAS  PubMed  Google Scholar 

  10. Carrero JJ, Yilmaz MI, Lindholm B, Stevinkel P. Cytokine dysregulation in chronic kidney disease: how can we treat it? Blood Purif. 2008;26:291–9.

    Article  CAS  PubMed  Google Scholar 

  11. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  CAS  Google Scholar 

  12. Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang J, Qin J, Li Y, Cai Z, Li S, Zhu J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  PubMed  CAS  Google Scholar 

  14. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  15. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–92.

    CAS  PubMed  Google Scholar 

  16. Harte AL, Varma MC, Tripathi G, Mcgee KC, Al-Daghri NM, Al-Attas OS, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35:375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hildebrandt M, Hoffman C, Sherrill-mix S, Keilbaugh S, Chen Y, Knight R, et al. High-fat diet determines the composition of the murine gut microbiome independently of the obesity. Gastroenterology. 2009;137:1716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stenvinkel P. Inflammation in end-stage renal failure: could it be treated? Nephrol Dial Transpl. 2002;17:S33–8.

    Article  Google Scholar 

  19. Kalantar-Zadeh K, Brennan ML, Hazen SL. Serum myeloperoxidase and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2006;48:59–68.

    Article  CAS  PubMed  Google Scholar 

  20. Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45–62.

    Article  CAS  PubMed  Google Scholar 

  21. Kau AL, Ahern PP, Griffin NW, Goodman AL, Jeffrey I. Human nutrition, the gut microbiome, and immune system: envisioning the future. Nature. 2012;474:327–36.

    Article  CAS  Google Scholar 

  22. Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr. 2013;23:77–90.

    Article  PubMed  Google Scholar 

  23. Cerf-Bensussan N, Eberl G. The dialog between microbiota and the immune system: shaping the partners through development and evolution. Semin Immunol. 2012;24:1–2.

    Article  PubMed  Google Scholar 

  24. Szeto CC, Kwan BC, Chow KM, Lai KB, Chung KY, Leung CB, et al. Endotoxemia Is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2008;3:431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonçalves S, Pecoits-Filho R, Perreto S, Barberato SH, Stinghen AEM, Lima EGA, et al. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant. 2006;21:2788–94.

    Article  PubMed  Google Scholar 

  26. Anders H-J, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–6.

    Article  CAS  PubMed  Google Scholar 

  27. Evenepoel P, Meijers BKI, Bammens BRM, Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009;76:S12–9.

    Article  CAS  Google Scholar 

  28. • Aron-Wisnewsky J, Clément K. The gut microbiome, diet and links to cardiometabolic and chronic disorders. Nat Rev Nephrol. 2016;12:169–81. This review is important because summarizes data suggesting a link between the intestinal microbiota and derived metabolites with food intake patterns, metabolic alterations and chronic cardiometabolic diseases.

    Article  CAS  PubMed  Google Scholar 

  29. Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol. 2012;7:99–122.

    Article  CAS  PubMed  Google Scholar 

  30. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  CAS  Google Scholar 

  31. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014;146:1449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant. 2015;30:924–33. This review is relevant because it discusses in depth the cross-talk between the kidney and the intestine in CKD and ESRD.

    Article  PubMed  Google Scholar 

  33. •• Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. 2016;31:737–46. This review gives a thorough description on the mechanisms involved in the derangement of intestinal barrier in CKD and ESRD.

    Article  PubMed  Google Scholar 

  34. Baumgart DC, Dignass U. Intestinal barrier function. Curr Opin Clin Nutr Metab Care. 2002;5:685–94.

    Article  CAS  PubMed  Google Scholar 

  35. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  36. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci. 2007;104:979–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau L, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice gut microbiota from twins metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  CAS  Google Scholar 

  40. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  41. Ley R, Turnbaugh P, Klein S, Gordon J. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  42. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  43. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wichmann A, Allahyar A, Greiner TU, Plovier H, Lundén GO, Larsson T, et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe. 2013;14:582–90.

    Article  CAS  PubMed  Google Scholar 

  46. Vallon V, Docherty NG. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4 in diabetic kidney disease. Exp Physiol. 2014;99:1140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allin KH, Nielsen T, Pedersen O. Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2015;172:167–77.

    Article  CAS  Google Scholar 

  48. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–98.

    Article  CAS  PubMed  Google Scholar 

  49. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2012;83:308–15.

    Article  PubMed  Google Scholar 

  50. De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, et al. Microbiota and metabolome associated with immunoglobulin a nephropathy (IgAN). PLoS One. 2014;9:e99006.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Piccolo M, De Angelis M, Lauriero G, Montemurno E, Di Cagno R, Gesualdo L, et al. Salivary microbiota associated with immunoglobulin A nephropathy. Microb Ecol. 2015;70:557–65.

    Article  CAS  PubMed  Google Scholar 

  52. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  53. Krishnamurthy VMR, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81:300–6.

    Article  CAS  PubMed  Google Scholar 

  54. Bammens B, Verbeke K, Vanrenterghem Y, Evenepoel P. Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003;64:2196–203.

    Article  CAS  PubMed  Google Scholar 

  55. Mafra D, Barros AF, Fouque D. Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Futur Microbiol. 2013;8:1317–23.

    Article  CAS  Google Scholar 

  56. Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res. 2012;11:5573–85.

    Article  CAS  PubMed  Google Scholar 

  57. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Impairment of small intestinal protein assimilation in patients with end-stage renal disease: extending the malnutrition–inflammation–atherosclerosis concept. Am J Clin Nutr. 2004;80:1536–43.

    CAS  PubMed  Google Scholar 

  58. Montemurno E, Cosola C, Dalfino G, Daidone G, De Angelis M, Gobbetti M, et al. What would you like to eat, Mr CKD Microbiota? A Mediterranean Diet, please! Kidney Blood Press Res. 2014;39:114–23.

    Article  CAS  PubMed  Google Scholar 

  59. Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, et al. Gut–microbiota–metabolite axis in early renal function decline. PLoS One. 2015;10:e0134311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang JY. The gastrointestinal tract in uremia. Dig Dis Sci. 1993;38:257–68.

    Article  CAS  PubMed  Google Scholar 

  62. Vaziri N, Freel W, Hatch M. Effect of chronic experimental renal insufficiency on urate metabolism. J Am Soc Nephrol. 1995;6:1313–7.

    CAS  PubMed  Google Scholar 

  63. Hatch M, Vaziri ND. Enhanced enteric excretion of urate in rats with chronic renal failure. Clin Sci (Lond). 1994;86:511–6.

    Article  CAS  Google Scholar 

  64. Hatch M, Freel RW, Vaziri ND. Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol. 1994;5:1339–43.

    CAS  PubMed  Google Scholar 

  65. Neirynck N, Vanholder R, Schepers E, Eloot S, Pletinck A, Glorieux G. An update on uremic toxins. Int Urol Nephrol. 2013;45:139–50.

    Article  CAS  PubMed  Google Scholar 

  66. Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol. 2014;25:615–22.

    Article  CAS  PubMed  Google Scholar 

  67. Vanholder R, Meert N, Schepers E, Glorieux G. Uremic toxins: do we know enough to explain uremia? Blood Purif. 2008;26:77–81.

    Article  CAS  PubMed  Google Scholar 

  68. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, et al. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19:863–70.

    Article  PubMed  Google Scholar 

  69. Viaene L, Meijers BKI, Bammens B, Vanrenterghem Y, Evenepoel P. Serum concentrations of p-cresyl sulfate and indoxyl sulfate, but not inflammatory markers, increase in incident peritoneal dialysis patients in parallel with loss of residual renal function. Perit Dial Int. 2014;34:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dobre M, Meyer TW, Hostetter TH. Searching for uremic toxins. Clin J Am Soc Nephrol. 2013;8:322–7.

    Article  CAS  PubMed  Google Scholar 

  71. Meijers BKI, Claes K, Bammens B, De Loor H, Viaene L, Verbeke K, et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin J Am Soc Nephrol. 2010;5:1182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liabeuf S, Barreto DV, Barreto FC, Meert N, Glorieux G, Schepers E, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant. 2010;25:1183–91.

    Article  CAS  PubMed  Google Scholar 

  73. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Brunet P. Vascular incompetence in dialysis patients—protein-bound uremic toxins and endothelial dysfunction. Semin Dial. 2011;24:327–37.

    Article  PubMed  Google Scholar 

  74. Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins (Basel). 2014;6:665–78.

    Article  CAS  Google Scholar 

  75. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost. 2007;5:1302–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yu M, Kim YJ, Kang D-H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol. 2011;6:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rossi M, Campbell KL, Johnson DW, Stanton T, Vesey DA, Coombes JS, et al. Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3–4 chronic kidney disease. Arch Med Res. 2014;45:309–17.

    Article  CAS  PubMed  Google Scholar 

  79. Chow J. Probiotics and prebiotics: a brief overview. J Ren Nutr. 2002;12:76–86.

    Article  PubMed  Google Scholar 

  80. de Vrese M, Schrezenmeir J. Probiotics, prebiotics and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.

    PubMed  Google Scholar 

  81. Griffiths EA, Duffy LC, Schanbacher FL, Qiao H, Dryja D, Leavens A, et al. In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci. 2004;49:579–89.

    Article  CAS  PubMed  Google Scholar 

  82. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5:262–9.

    Article  CAS  PubMed  Google Scholar 

  83. Veldhorst MAB, Westerterp KR, Westerterp-Plantenga MS. Gluconeogenesis and protein-induced satiety. Br J Nutr. 2012;107:595–600.

    Article  CAS  PubMed  Google Scholar 

  84. Monolayers C-C, Peng L, Li Z, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase. J Nutr. 2009;139:1619–25.

    Article  CAS  Google Scholar 

  85. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916.e7.

    Article  CAS  PubMed  Google Scholar 

  86. Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem. 2013;288:25088–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jakobsdottir G, Xu J, Molin G, Ahrne S, Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One. 2013;8:e80476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–83.

    Article  CAS  PubMed  Google Scholar 

  90. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr. 2005;82:559–67.

    CAS  PubMed  Google Scholar 

  91. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism Is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82.

    Article  CAS  PubMed  Google Scholar 

  93. Takayama F, Taki K, Niwa T. Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis. 2003;41:S142–5.

    Article  PubMed  Google Scholar 

  94. Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin. 2009;25:1919–30.

    Article  CAS  PubMed  Google Scholar 

  95. Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther. 2010;27:634–47.

    Article  PubMed  Google Scholar 

  96. Miranda Alatriste PV, Urbina Arronte R, Gomez Espinosa CO, de los Espinosa Cuevas M. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp. 2014;29:582–90.

    PubMed  Google Scholar 

  97. Bliss DZ, Stein TP, Schleifer CR, Settle RG. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr. 1996;63:392–8.

    CAS  PubMed  Google Scholar 

  98. Meijers BKI, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant. 2010;25:219–24.

    Article  CAS  PubMed  Google Scholar 

  99. Salmean YA, Segal MS, Langkamp-Henken B, Canales MT, Zello GA, Dahl WJ. Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutr. 2013;23:e29–32.

    Article  CAS  PubMed  Google Scholar 

  100. Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. 2011;26:1094–8.

    Article  CAS  PubMed  Google Scholar 

  101. Cruz-Mora J, Martínez-Hernández NE, Martín del Campo-López F, Viramontes-Hörner D, Vizmanos-Lamotte B, Muñoz-Valle JF, et al. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J Ren Nutr. 2014;24:330–5.

    Article  PubMed  Google Scholar 

  102. Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, Forbes JM, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11:223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. De Angelis M, Montemurno E, Vannini L, Cosola C, Cavallo N, Gozzi G, et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol. 2015;81:7945–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G, et al. Beta-glucans supplementation associates with reduction in p-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS One. 2017;12(1):e0169635. doi:10.1371/journal.pone.0169635.

  105. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron. 1996;74:349–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fiaccadori.

Ethics declarations

Conflict of Interest

A.S., G.R., C.C., L.G., and E.F. declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article contains studies with human subjects performed by one of the authors, L.G. In this case, all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the Helsinki declaration. This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, A., Regolisti, G., Cosola, C. et al. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr Diab Rep 17, 16 (2017). https://doi.org/10.1007/s11892-017-0841-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0841-z

Keywords

Navigation