Skip to main content

Advertisement

Log in

Cardiac Abnormalities in Youth with Obesity and Type 2 Diabetes

Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Childhood obesity has been linked to cardiovascular disease (CVD) risk in adulthood. Of great concern is the expected increase in the population’s CVD burden in relation to childhood obesity. This is compounded by the risk related to chronic hyperglycemia exposure in youth with type 2 diabetes. We herein provide an overview of the spectrum of early cardiovascular disease manifestation in youth with obesity and type 2 diabetes, in particular abnormalities in cardiac structure and function. Cardiac remodeling and adverse target organ damage is already evident in the pediatric age group in children with obesity and type 2 diabetes. This supports the importance of intensifying obesity prevention efforts and early intervention to treat comorbidities of obesity in the pediatric age group to prevent cardiac events in early adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dabelea D, Mayer-Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. Jama. 2014;311(17):1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mahoney LT, Burns TL, Stanford W, et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine study. J Am Coll Cardiol. 1996;27(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  4. Toprak A, Wang H, Chen W, et al. Relation of childhood risk factors to left ventricular hypertrophy (eccentric or concentric) in relatively young adulthood (from the Bogalusa Heart study). Am J Cardiol. 2008;101(11):1621–5.

    Article  PubMed  Google Scholar 

  5. Juonala M, Magnussen CG, Venn A, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns study, the Childhood Determinants of Adult Health study, the Bogalusa Heart study, and the Muscatine study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010;122(24):2514–20.

    Article  PubMed  Google Scholar 

  6. McGill Jr HC, McMahan CA, Herderick EE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–8.

    Article  PubMed  Google Scholar 

  7. Bibbins-Domingo K, Coxson P, Pletcher MJ, et al. Adolescent overweight and future adult coronary heart disease. N Engl J Med. 2007;357(23):2371–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fagot-Campagna A. Emergence of type 2 diabetes mellitus in children: epidemiological evidence. J Pediatric Endocrinol Metab JPEM. 2000;13 Suppl 6:1395–402.

    PubMed  Google Scholar 

  9. Rosenbloom AL, Joe JR, Young RS, et al. Emerging epidemic of type 2 diabetes in youth. Diabetes Care. 1999;22(2):345–54.

    Article  CAS  PubMed  Google Scholar 

  10. Jousilahti P, Tuomilehto J, Vartiainen E, et al. Body weight, cardiovascular risk factors, and coronary mortality. 15-year follow-up of middle-aged men and women in eastern Finland. Circulation. 1996;93(7):1372–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell AB, Cole JW, McArdle PF, et al. Obesity increases risk of ischemic stroke in young adults. Stroke J Cerebral Circulation. 2015;46(6):1690–2. Relationship of obesity to the risk of stroke.

    Article  Google Scholar 

  12. Wilhelmsen L, Rosengren A, Eriksson H, et al. Heart failure in the general population of men—morbidity, risk factors and prognosis. J Intern Med. 2001;249(3):253–61.

    Article  CAS  PubMed  Google Scholar 

  13. He J, Ogden LG, Bazzano LA, et al. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996–1002.

    Article  CAS  PubMed  Google Scholar 

  14. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.

    Article  PubMed  Google Scholar 

  15. Emerging Risk Factors C, Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95.

    Article  Google Scholar 

  16. Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  CAS  Google Scholar 

  17. Gidding SS. Noninvasive cardiac imaging: implications for risk assessment in adolescents and young adults. Ann Med. 2008;40(7):506–13.

    Article  PubMed  Google Scholar 

  18. May AL, Kuklina EV, Yoon PW. Prevalence of cardiovascular disease risk factors among US adolescents, 1999–2008. Pediatrics. 2012;129(6):1035–41.

    Article  PubMed  Google Scholar 

  19. Sorof JM, Poffenbarger T, Franco K, et al. Isolated systolic hypertension, obesity, and hyperkinetic hemodynamic states in children. J Pediatr. 2002;140(6):660–6.

    Article  PubMed  Google Scholar 

  20. Maggio AB, Aggoun Y, Marchand LM, et al. Associations among obesity, blood pressure, and left ventricular mass. J Pediatr. 2008;152(4):489–93.

    Article  PubMed  Google Scholar 

  21. Kit BK, Kuklina E, Carroll MD, et al. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999–2012. JAMA Pediatrics. 2015;169(3):272–9.

    Article  PubMed  Google Scholar 

  22. Pinhas-Hamiel O, Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet. 2007;369(9575):1823–31.

    Article  PubMed  Google Scholar 

  23. Petitti DB, Imperatore G, Palla SL, et al. Serum lipids and glucose control: the SEARCH for Diabetes in Youth study. Arch Pediatrics Adolescent Med. 2007;161(2):159–65.

    Article  Google Scholar 

  24. Eppens MC, Craig ME, Cusumano J, et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care. 2006;29(6):1300–6.

    Article  PubMed  Google Scholar 

  25. Constantino MI, Molyneaux L, Limacher-Gisler F, et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36(12):3863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bacha F, Gungor N, Lee S, et al. In vivo insulin sensitivity and secretion in obese youth: what are the differences between normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes? Diabetes Care. 2009;32(1):100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tfayli H, Bacha F, Gungor N, et al. Phenotypic type 2 diabetes in obese youth: insulin sensitivity and secretion in islet cell antibody-negative versus -positive patients. Diabetes. 2009;58(3):738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622.

    Article  CAS  PubMed  Google Scholar 

  29. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Group TS, Zeitler P, Hirst K, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366(24):2247–56. Primary outcome data of the TODAY study highlighting aggressive course of T2DM in youth.

    Article  Google Scholar 

  31. Group TS, Zeitler P, Epstein L, et al. Treatment options for type 2 diabetes in adolescents and youth: a study of the comparative efficacy of metformin alone or in combination with rosiglitazone or lifestyle intervention in adolescents with type 2 diabetes. Pediatr Diabetes. 2007;8(2):74–87.

    Article  Google Scholar 

  32. Group TS. Lipid and inflammatory cardiovascular risk worsens over 3 years in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1758–64. Worsening of dyslipidemia and inflammation over time in youth with T2DM in TODAY.

    Article  CAS  Google Scholar 

  33. Group TS. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41. Rapid increase in the rate of microalbuminuria and hypertension in youth with T2DM in TODAY.

    Article  CAS  Google Scholar 

  34. Kriska A, Delahanty L, Edelstein S, et al. Sedentary behavior and physical activity in youth with recent onset of type 2 diabetes. Pediatrics. 2013;131(3):e850–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baker JL, Olsen LW, Sorensen TI. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007;357(23):2329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tirosh A, Shai I, Afek A, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med. 2011;364(14):1315–25.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Li S, Ulusoy E, et al. Childhood adiposity as a predictor of cardiac mass in adulthood: the Bogalusa Heart study. Circulation. 2004;110(22):3488–92.

    Article  PubMed  Google Scholar 

  38. Juhola J, Magnussen CG, Viikari JS, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns study. J Pediatr. 2011;159(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  39. Urbina EM, Williams RV, Alpert BS, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–50.

    Article  CAS  PubMed  Google Scholar 

  40. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    Article  PubMed  Google Scholar 

  41. Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459–67.

    Article  PubMed  Google Scholar 

  42. Urbina EM, Bean JA, Daniels SR, et al. Overweight and hyperinsulinemia provide individual contributions to compromises in brachial artery distensibility in healthy adolescents and young adults: brachial distensibility in children. J Am Soc Hypertension JASH. 2007;1(3):200–7.

    Article  Google Scholar 

  43. Gungor N, Bacha F, Saad R, et al. Youth type 2 diabetes: insulin resistance, beta-cell failure, or both? Diabetes Care. 2005;28(3):638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urbina EM, Kimball TR, Khoury PR, et al. Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J Hypertens. 2010;28(8):1692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah AS, Dolan LM, Kimball TR, et al. Influence of duration of diabetes, glycemic control, and traditional cardiovascular risk factors on early atherosclerotic vascular changes in adolescents and young adults with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(10):3740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naylor LH, Green DJ, Jones TW, et al. Endothelial function and carotid intima-medial thickness in adolescents with type 2 diabetes mellitus. J Pediatr. 2011;159(6):971–4.

    Article  CAS  PubMed  Google Scholar 

  47. Bacha F, Edmundowicz D, Sutton-Tyrell K, et al. Coronary artery calcification in obese youth: what are the phenotypic and metabolic determinants? Diabetes Care. 2014;37(9):2632–9. Determinants of pulse wave velocity, intima-media thickness and coronary calcification in obese youth with and without T2DM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29(19):2388–442.

    Article  CAS  PubMed  Google Scholar 

  49. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiograp J Work Group Echocardiograp Eur Soc Cardiol. 2011;12(3):167–205.

    Article  Google Scholar 

  50. de Simone G, Devereux RB, Roman MJ, et al. Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 1994;23(5):600–6.

    Article  PubMed  Google Scholar 

  51. Daniels SR, Kimball TR, Morrison JA, et al. Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol. 1995;76(10):699–701.

    Article  CAS  PubMed  Google Scholar 

  52. de Simone G, Devereux RB, Daniels SR, et al. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25(5):1056–62.

    Article  PubMed  Google Scholar 

  53. Daniels SR, Loggie JM, Khoury P, et al. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97(19):1907–11.

    Article  CAS  PubMed  Google Scholar 

  54. de Simone G, Daniels SR, Kimball TR, et al. Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension. 2005;45(1):64–8.

    Article  PubMed  CAS  Google Scholar 

  55. Ganau A, Saba PS, Roman MJ, et al. Ageing induces left ventricular concentric remodelling in normotensive subjects. J Hypertens. 1995;13(12 Pt 2):1818–22.

    CAS  PubMed  Google Scholar 

  56. Daniels SR, Meyer RA, Liang YC, et al. Echocardiographically determined left ventricular mass index in normal children, adolescents and young adults. J Am Coll Cardiol. 1988;12(3):703–8.

    Article  CAS  PubMed  Google Scholar 

  57. Levitt Katz L, Gidding SS, Bacha F, et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatr Diabetes. 2015;16(1):39–47. Echocardiographic findings in youth with T2DM in relation to obesity, blood pressure, sex and race-ethnicity in TODAY.

    Article  PubMed  Google Scholar 

  58. Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19(7):1550–8.

    Article  CAS  PubMed  Google Scholar 

  59. Muiesan ML, Salvetti M, Monteduro C, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  60. D'Hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiograp J Work Group Echocardiograp Eur Soc Cardiol. 2000;1(3):154–70.

    Article  Google Scholar 

  61. Wong CY, O'Moore-Sullivan T, Leano R, et al. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110(19):3081–7.

    Article  PubMed  Google Scholar 

  62. De Boeck BW, Cramer MJ, Oh JK, et al. Spectral pulsed tissue Doppler imaging in diastole: a tool to increase our insight in and assessment of diastolic relaxation of the left ventricle. Am Heart J. 2003;146(3):411–9.

    Article  PubMed  Google Scholar 

  63. Leite-Moreira AF. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart. 2006;92(5):712–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rider OJ, Francis JM, Ali MK, et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012;125(12):1511–9.

    Article  CAS  PubMed  Google Scholar 

  65. de Jonge LL, van Osch-Gevers L, Willemsen SP, et al. Growth, obesity, and cardiac structures in early childhood: the Generation R study. Hypertension. 2011;57(5):934–40.

    Article  PubMed  CAS  Google Scholar 

  66. Daniels SR, Kimball TR, Morrison JA, et al. Effect of lean body mass, fat mass, blood pressure, and sexual maturation on left ventricular mass in children and adolescents. Statistical, biological, and clinical significance. Circulation. 1995;92(11):3249–54.

    Article  CAS  PubMed  Google Scholar 

  67. Urbina EM, Gidding SS, Bao W, et al. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart study. Circulation. 1995;91(9):2400–6.

    Article  CAS  PubMed  Google Scholar 

  68. Sivanandam S, Sinaiko AR, Jacobs Jr DR, et al. Relation of increase in adiposity to increase in left ventricular mass from childhood to young adulthood. Am J Cardiol. 2006;98(3):411–5.

    Article  PubMed  Google Scholar 

  69. Chinali M, de Simone G, Roman MJ, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart study. J Am Coll Cardiol. 2006;47(11):2267–73.

    Article  PubMed  Google Scholar 

  70. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  71. Armstrong AC, Gidding S, Gjesdal O, et al. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. J Am Coll Cardiol Img. 2012;5(8):837–48.

    Article  Google Scholar 

  72. Armstrong AC, Jacobs Jr DR, Gidding SS, et al. Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol. 2014;172(2):350–5. Relationship of LV mass to CV events in CARDIA.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271–6.

    Article  CAS  PubMed  Google Scholar 

  74. Ilercil A, Devereux RB, Roman MJ, et al. Relationship of impaired glucose tolerance to left ventricular structure and function: the Strong Heart study. Am Heart J. 2001;141(6):992–8.

    Article  CAS  PubMed  Google Scholar 

  75. Palmieri V, Bella JN, Arnett DK, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation. 2001;103(1):102–7.

    Article  CAS  PubMed  Google Scholar 

  76. Gidding SS, Liu K, Colangelo LA, et al. Longitudinal determinants of left ventricular mass and geometry: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation Cardiovasc Imaging. 2013;6(5):769–75. Prevalence of abnormal LV mass and geometry increased from young adulthood to middle age In CARDIA and was related to cardiovascular risk factors at baseline and change in these risk factors.

    Article  Google Scholar 

  77. Beljic T, Miric M. Improved metabolic control does not reverse left ventricular filling abnormalities in newly diagnosed non-insulin-dependent diabetes patients. Acta Diabetol. 1994;31(3):147–50.

    Article  CAS  PubMed  Google Scholar 

  78. Schillaci G, Pasqualini L, Verdecchia P, et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol. 2002;39(12):2005–11.

    Article  PubMed  Google Scholar 

  79. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55(4):300–5.

    Article  PubMed  Google Scholar 

  80. Tsang TS, Abhayaratna WP, Barnes ME, et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J Am Coll Cardiol. 2006;47(5):1018–23.

    Article  PubMed  Google Scholar 

  81. Moller JE, Hillis GS, Oh JK, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation. 2003;107(17):2207–12.

    Article  PubMed  Google Scholar 

  82. Friberg P, Allansdotter-Johnsson A, Ambring A, et al. Increased left ventricular mass in obese adolescents. Eur Heart J. 2004;25(11):987–92.

    Article  CAS  PubMed  Google Scholar 

  83. Ayer JG, Sholler GF, Celermajer DS. Left atrial size increases with body mass index in children. Int J Cardiol. 2010;141(1):61–7.

    Article  PubMed  Google Scholar 

  84. Yu JJ, Yeom HH, Chung S, et al. Left atrial diameters in overweight children with normal blood pressure. J Pediatr. 2006;148(3):321–5.

    Article  PubMed  Google Scholar 

  85. Dhuper S, Abdullah RA, Weichbrod L, et al. Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity. 2011;19(1):128–33.

    Article  PubMed  Google Scholar 

  86. Sorof JM, Cardwell G, Franco K, et al. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39(4):903–8.

    Article  CAS  PubMed  Google Scholar 

  87. Avelar E, Cloward TV, Walker JM, et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension. 2007;49(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  88. Whalley GA, Gusso S, Hofman P, et al. Structural and functional cardiac abnormalities in adolescent girls with poorly controlled type 2 diabetes. Diabetes Care. 2009;32(5):883–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Daniels SR, Witt SA, Glascock B, et al. Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr. 2002;141(2):186–90.

    Article  PubMed  Google Scholar 

  90. Ippisch HM, Inge TH, Daniels SR, et al. Reversibility of cardiac abnormalities in morbidly obese adolescents. J Am Coll Cardiol. 2008;51(14):1342–8.

    Article  PubMed  Google Scholar 

  91. Shah AS, Khoury PR, Dolan LM, et al. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults. Diabetologia. 2011;54(4):722–30.

    Article  CAS  PubMed  Google Scholar 

  92. Cerutti F, Rabbia F, Rabbone I, et al. Impairment of cardiovascular autonomic pattern in obese adolescents with type 2 diabetes mellitus. J Endocrinol Investig. 2010;33(8):539–43.

    Article  CAS  Google Scholar 

  93. Mehta SK, Holliday C, Hayduk L, et al. Comparison of myocardial function in children with body mass indexes >/=25 versus those <25 kg/m2. Am J Cardiol. 2004;93(12):1567–9.

    Article  PubMed  Google Scholar 

  94. Ingul CB, Tjonna AE, Stolen TO, et al. Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch Pediatrics Adolescent Med. 2010;164(9):852–9.

    Article  Google Scholar 

  95. Di Salvo G, Pacileo G, Del Giudice EM, et al. Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J. 2006;27(22):2689–95.

    Article  PubMed  Google Scholar 

  96. Lorch SM, Sharkey A. Myocardial velocity, strain, and strain rate abnormalities in healthy obese children. J Cardiometab Syndrome. 2007;2(1):30–4.

    Article  Google Scholar 

  97. Schuster I, Karpoff L, Perez-Martin A, et al. Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity. 2009;17(10):1878–83.

    Article  PubMed  Google Scholar 

  98. Bhattacharjee R, Kheirandish-Gozal L, Pillar G, et al. Cardiovascular complications of obstructive sleep apnea syndrome: evidence from children. Prog Cardiovasc Dis. 2009;51(5):416–33.

    Article  PubMed  Google Scholar 

  99. Amin RS, Kimball TR, Kalra M, et al. Left ventricular function in children with sleep-disordered breathing. Am J Cardiol. 2005;95(6):801–4.

    Article  PubMed  Google Scholar 

  100. Pinto TE, Gusso S, Hofman PL, et al. Systolic and diastolic abnormalities reduce the cardiac response to exercise in adolescents with type 2 diabetes. Diabetes Care. 2014;37(5):1439–46.

    Article  CAS  PubMed  Google Scholar 

  101. Nadeau KJ, Zeitler PS, Bauer TA, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94(10):3687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Klingbeil AU, Schneider M, Martus P, et al. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115(1):41–6.

    Article  PubMed  Google Scholar 

  103. Fagard RH, Celis H, Thijs L, et al. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54(5):1084–91.

    Article  CAS  PubMed  Google Scholar 

  104. Wang JG, Staessen JA, Li Y, et al. Carotid intima-media thickness and antihypertensive treatment: a meta-analysis of randomized controlled trials. Stroke J Cerebral Circulation. 2006;37(7):1933–40.

    Article  CAS  Google Scholar 

  105. Byrkjeland R, Stensaeth KH, Anderssen S, et al. Effects of exercise training on carotid intima-media thickness in patients with type 2 diabetes and coronary artery disease. Influence of carotid plaques. Cardiovasc Diabetol. 2016;15(1):13. One year of exercise training in patients with type 2 diabetes and CAD; a beneficial effect of exercise training on cIMT progression was demonstrated in those who did not have plaques. This highlights the importance of early intervention.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Crouse 3rd JR, Raichlen JS, Riley WA, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. Jama. 2007;297(12):1344–53.

    Article  CAS  PubMed  Google Scholar 

  107. Watts K, Beye P, Siafarikas A, et al. Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. J Am Coll Cardiol. 2004;43(10):1823–7.

    Article  PubMed  Google Scholar 

  108. Farpour-Lambert NJ, Aggoun Y, Marchand LM, et al. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J Am Coll Cardiol. 2009;54(25):2396–406.

    Article  CAS  PubMed  Google Scholar 

  109. Zeybek C, Aktuglu-Zeybek C, Onal H, et al. Right ventricular subclinical diastolic dysfunction in obese children: the effect of weight reduction with a low-carbohydrate diet. Pediatr Cardiol. 2009;30(7):946–53.

    Article  PubMed  Google Scholar 

  110. Millen A, Norton G, Avidon I, et al. Effects of short-term exercise training on tissue Doppler indices of left ventricular diastolic function in overweight and obese individuals. J Sports Sci. 2014;32(5):487–99.

    Article  PubMed  Google Scholar 

  111. Bacha F GS, Pyle L, Katz L, Kriska A, Nadeau K. Relationship of echocardiogram (ECHO) to cardiorespiratory fitness (CRF) and body composition in youth with type 2 diabetes (T2D) in TODAY. Diabetes. 2014:164-OR.

  112. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The contents of this article are the opinion of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fida Bacha.

Ethics declarations

Conflict of Interest

The authors report grant funding during the preparation of this manuscript. Dr. Bacha received grant funding from the USDA/ARS and from the NIDDK (as co-investigator in the TODAY study). Dr. Gidding received grant funding from the NHLBI and from the NIDDK (as co-investigator in the TODAY study), and he also developed educational material regarding familial hypercholesterolemia for the American College of Cardiology.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacha, F., Gidding, S.S. Cardiac Abnormalities in Youth with Obesity and Type 2 Diabetes. Curr Diab Rep 16, 62 (2016). https://doi.org/10.1007/s11892-016-0750-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0750-6

Keywords

Navigation