Skip to main content

Advertisement

Log in

Is Insulin Resistance a Feature of or a Primary Risk Factor for Cardiovascular Disease?

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The two major pathophysiological abnormalities in type 2 diabetes are insulin resistance and impaired insulin secretion. Insulin resistance is a general term meaning that insulin does not exert its normal effects in insulin-sensitive target tissues, such as skeletal muscle, adipose tissue, and liver, the major target tissues for insulin action in glucose metabolism. Insulin resistance (IR) promotes cardiovascular disease via multiple mechanisms, including changes in classic cardiovascular risk factors and downregulation of the insulin signaling pathways in different tissues. This review presents evidence for the association of insulin resistance with cardiovascular disease from clinical and population-based studies. The causality of the association of insulin resistance with cardiovascular disease is discussed on the basis of recent findings from the Mendelian randomization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Tripathy D, Almgren P, Tuomi T, et al. Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. Diabetes Care. 2004;27:2204–10.

    Article  CAS  PubMed  Google Scholar 

  3. Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin dependent diabetes mellitus. Prospective studies of Pima Indians. New Engl J Med. 1993;329:1988–92.

    Article  CAS  PubMed  Google Scholar 

  4. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin N Am. 2004;88:787–835.

    Article  CAS  PubMed  Google Scholar 

  5. Zierath JR, Kawano Y. The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab. 2003;17:385–98.

    Article  CAS  PubMed  Google Scholar 

  6. Abdul-Ghani MA, Matsuda M, DeFronzo RA. Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects. Diabet Med. 2008;25:1289–94.

    CAS  PubMed  Google Scholar 

  7. Cherrington AD. Banting lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999;48:1198–214.

    Article  CAS  PubMed  Google Scholar 

  8. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gastaldelli A, Natali A, Vettor R, et al. Insulin resistance, adipose depots and gut: interactions and pathological implications. Dig Liver Dis. 2010;42:310–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.

    CAS  PubMed  Google Scholar 

  12. Knuuti J, Nuutila P. PET as a cardiovascular and metabolic research tool. Ann Med. 1999;31:450–6.

    Article  CAS  PubMed  Google Scholar 

  13. Bergman RN, Ider YZ, Bowden CR, et al. Quantitative estimation of insulin sensitivity. Am J Physiol. 1979;236:E667–77.

    CAS  PubMed  Google Scholar 

  14. Hanley AJ, Wagenknecht LE, Norris JM, et al. Insulin resistance, beta cell dysfunction and visceral adiposity as predictors of incident diabetes: the insulin resistance atherosclerosis study (IRAS) family study. Diabetologia. 2009;52:2079–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stančáková A, Javorsky M, Kuulasmaa T, et al. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes. 2009;58:1212–21.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Muniyappa R, Lee S, Chen H, et al. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008;294:E15–26.

    Article  CAS  PubMed  Google Scholar 

  17. Vangipurapu J, Stančáková A, Pihlajamäki J, et al. Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. Diabetologia. 2011;54:563–71.

    Article  CAS  PubMed  Google Scholar 

  18. Laakso M, Sarlund H, Salonen R, et al. Asymptomatic atherosclerosis and insulin resistance. Arterioscler Thromb. 1991;11:1068–76.

    Article  CAS  PubMed  Google Scholar 

  19. Bressler P, Bailey SR, Matsuda M, et al. Insulin resistance and coronary artery disease. Diabetologia. 1996;39:1345–50.

    Article  CAS  PubMed  Google Scholar 

  20. Zethelius B, Lithell H, Hales CN, et al. Insulin sensitivity, proinsulin and insulin as predictors of coronary heart disease. A population-based 10-year, follow-up study in 70-year old men using the euglycaemic insulin clamp. Diabetologia. 2005;48:862–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wiberg B, Sundström J, Zethelius B, et al. Insulin sensitivity measured by the euglycemic insulin clamp and proinsulin levels as predictors of stroke in elderly men. Diabetologia. 2009;52:90–6.

    Article  CAS  PubMed  Google Scholar 

  22. Laakso M. Insulin resistance and coronary heart disease. Curr Opin Lipidol. 1996;7:217–26.

    Article  CAS  PubMed  Google Scholar 

  23. Laakso M. Cardiovascular disease in type 2 diabetes: challenge for treatment and prevention. J Intern Med. 2001;249:225–35.

    Article  CAS  PubMed  Google Scholar 

  24. Gast KB, Tjeerdema N, Stijnen T, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One. 2012;7, e52036.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Eddy D, Schlessinger L, Kahn R, et al. Relationship of insulin resistance and related metabolic variables to coronary artery disease: a mathematical analysis. Diabetes Care. 2009;32:361–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yki-Järvinen H, Koivisto VA. Natural course of insulin resistance in type I diabetes. N Engl J Med. 1986;315:224–30.

    Article  PubMed  Google Scholar 

  27. Cleland SJ, Fisher BM, Colhoun HM, et al. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia. 2013;56:1462–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Laakso M, Kuusisto J. Insulin resistance and hyperglycemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10:293–302.

    Article  CAS  PubMed  Google Scholar 

  29. Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care. 2007;30:707–12.

    Article  CAS  PubMed  Google Scholar 

  30. Schauer IE, Snell-Bergeon JK, Bergman BC, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: the CACTI study. Diabetes. 2011;60:306–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53:1270–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Laakso M. Cardiovascular disease in type 2 diabetes, from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care. 2010;33:442–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Foundation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kuusisto J, Lempiäinen P, Mykkänen L, et al. Insulin resistance syndrome predicts coronary heart disease events in elderly type 2 diabetic men. Diabetes Care. 2001;24:1629–33.

    Article  CAS  PubMed  Google Scholar 

  35. Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209:13–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Carmienke S, Freitag MH, Pischon T, et al. General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis. Eur J Clin Nutr. 2013;67:573–85.

    Article  CAS  PubMed  Google Scholar 

  37. Fall T, Hägg S, Mägi R, et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med. 2013;10, e1001474.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Van de Voorde J, Pauwels B, Boydens C, et al. Adipocytokines in relation to cardiovascular disease. Metabolism. 2013;62:1513–21.

    Article  PubMed  Google Scholar 

  40. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6:87–97.

    Article  CAS  PubMed  Google Scholar 

  42. Obstfeld AE, Sugaru E, Thearle M, et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;9:916–25.

    Article  Google Scholar 

  43. Adiels M, Olofsson SO, Taskinen MR, et al. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:1225–36.

    Article  CAS  PubMed  Google Scholar 

  44. Borén J, Taskinen MR, Olofsson SO, et al. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med. 2013;274:25–40.

    Article  PubMed  Google Scholar 

  45. Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med. 2010;363:1341–50.

    Article  CAS  PubMed  Google Scholar 

  46. FízeIova M, Cederberg H, Stančáková A, et al. Markers of tissue-specific insulin resistance predict the worsening of hyperglycemia, incident type 2 diabetes and cardiovascular disease. PLoS One. 2014;9, e109772.

    Article  Google Scholar 

  47. Mahmoud AM, Brown MD, Phillips SA, et al. Skeletal muscle vascular function: a counterbalance of insulin action. Microcirculation. 2015. doi:10.1111/micc.12205.

    PubMed  Google Scholar 

  48. de Jager J, Dekker JM, Kooy A, et al. Endothelial dysfunction and low-grade inflammation explain much of the excess of cardiovascular mortality in individuals with type 2 diabetes: the Hoorn Study. Arterioscler Thromb Vasc Biol. 2006;26:1086–93.

    Article  PubMed  Google Scholar 

  49. Paré G, Ridker PM, Rose L, et al. Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet. 2011;7, e1001374.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Soinio M, Marniemi J, Laakso M, et al. High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care. 2006;29:329–33.

    Article  CAS  PubMed  Google Scholar 

  51. Elliott P, Chambers JC, Zhang W, et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302:37–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wensley F, Gao P, Burgess S, et al. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548.

    Article  PubMed  Google Scholar 

  53. Han S, Liang CP, DeVries-Seimon T, et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab. 2006;3:257–66.

    Article  CAS  PubMed  Google Scholar 

  54. Myoishi M, Hao H, Minamino T, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116:1226–33.

    Article  PubMed  Google Scholar 

  55. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J. 2014;35:1917–24.

    Article  CAS  PubMed  Google Scholar 

  57. Semple RK, Chatterjee VK, O’Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest. 2006;116:581–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hanieh Yaghootkar H, Scott RA, White CC, et al. Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes. 2014;63:4369–77.

    Article  PubMed  Google Scholar 

  59. Kilpeläinen TO, Zillikens MC, Stančákova A, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet. 2011;43:753–60.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ross S, Gerstein HC, Eikelboom J, et al. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. Eur Heart J. 2015;36:1454–62. This study is the first one to show that dysglycemia, diabetes, insulin resistance, and impaired insulin secretion are causally associated with the risk of coronary heart disease.

    Article  PubMed  Google Scholar 

  61. Benn M, Tybjaerg-Hansen A, McCarthy MI, et al. Nonfasting glucose, ischemic heart disease, and myocardial infarction: a Mendelian randomization study. J Am Coll Cardiol. 2012;59:2356–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Nordestgaard BG, Palmer TM, Benn M, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 2012;9:e1001212. The first Mendelian randomization study showing that obesity is causally associated with the risk of ischemic heart disease.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Holmes MV, Lange LA, Palmer T, et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet. 2014;94:198–208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hägg S, Fall T, Ploner A, et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int J Epidemiol. 2015;44:578–86.

    Article  PubMed  Google Scholar 

  65. Lieb W, Jansen H, Loley C, et al. Genetic predisposition to higher blood pressure increases coronary artery disease risk. Hypertension. 2013;61:995–1001.

    Article  CAS  PubMed  Google Scholar 

  66. Mahendran Y, Cederberg H, Vangipurapu J, et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care. 2013;36:3732–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. De Silva NM, Freathy RM, Palmer TM, et al. Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes. 2011;60:1008–18.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52. The authors used 185 common variants mapped for plasma lipids to examine the role of triglycerides in risk for coronary heart disease. Their results suggest that triglyceride-rich lipoproteins causally influence risk for coronary heart disease.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identified new risk loci for coronary heart disease. Nat Genet. 2013;45:25–33.

    Article  CAS  PubMed  Google Scholar 

  70. Haase CL, Tybjærg-Hansen A, Nordestgaard BG, et al. High-density lipoprotein cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes. 2015.

  71. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380:572–80. This study demonstrates the causality of LDL cholesterol in the risk of myocardial infarction using a Mendelian randomization approach. The study also showed that low HDL cholesterol was not causally associated with the risk of myocardial infarction.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, et al. Genetically elevated lipoprotein (a) and increased risk of myocardial infarction. JAMA. 2009;22:2331–9.

    Article  Google Scholar 

  73. Sarwar N, Butterworth AS, Freitag DF, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;9822:1205–13.

    Google Scholar 

  74. Nüesch E, Dale C, Palmer TM, et al. Adult height, coronary heart disease and stroke: a multi-locus Mendelian randomization meta-analysis. Int J Epidemiol. 2015.

  75. Holmes MV, Dale CE, Zuccolo L, Silverwood RJ, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2014;10(349):g4164.

    Article  Google Scholar 

  76. Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Markku Laakso declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animals performed by the author. All human studies referred to and performed by the author have been accepted by the local Ethics Committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Laakso.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laakso, M. Is Insulin Resistance a Feature of or a Primary Risk Factor for Cardiovascular Disease?. Curr Diab Rep 15, 105 (2015). https://doi.org/10.1007/s11892-015-0684-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0684-4

Keywords

Navigation