Skip to main content

Advertisement

Log in

Induction of tolerance for islet transplantation for type 1 diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes is an autoimmune disorder characterized by selective destruction of pancreatic β cells and absolute insulin deficiency. Even when treated well, control is imperfect and complications inevitable. Advances in immunosuppressive drugs and preparation of donor islets have recently made curative islet transplantation a reality for type 1 diabetes. Unfortunately, short-term side effects and long-term health risks of lifelong systemic immunosuppression compromise the otherwise extraordinary benefits that accrue from a successful graft. Our current goal is to obviate the need for immunosuppression and achieve islet graft tolerance. New protocols based on costimulation blockade have brought us close to that goal, inducing states of both peripheral and central transplantation tolerance. These have overcome both allograft rejection and recurrent autoimmunity, but potentially detrimental effects of environmental agents on tolerance are not yet fully understood. Studies of the underlying mechanisms have provided new insights into the nature of both tolerance and autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sorli CH, Greiner DL, Mordes JP, Rossini AA: Stem cell transplantation for treatment of autoimmune diseases. Graft 1998, 1:71–81

    Google Scholar 

  2. Domenick MA, Ildstad ST: Impact of bone marrow transplantation on type I diabetes. World J Surg 2001, 25:474–480

    Article  PubMed  CAS  Google Scholar 

  3. Rossini AA, Greiner DL, Mordes JP: Induction of immunological tolerance for transplantation. Physiol Rev 1999, 79:99–141

    PubMed  CAS  Google Scholar 

  4. Kelly WD, Lillehei RC, Merkel FK, et al.: Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967, 61:827–837.

    PubMed  CAS  Google Scholar 

  5. Squifflet JP: New developments in pancreas and islet transplantation. Transplant Proc 2001, 33:3492–3493.

    Article  PubMed  CAS  Google Scholar 

  6. Sutherland DER, Gruessner RWG, Gruessner AC: Pancreas transplantation for treatment of diabetes mellitus. World J Surg 2001, 25:487–496.

    Article  PubMed  CAS  Google Scholar 

  7. White SA, James RF, Swift SM, et al.: Human islet cell transplantation —future prospects. Diabet Med 2001, 18:78–103.

    Article  PubMed  CAS  Google Scholar 

  8. Shapiro AM, Lakey JR, Ryan EA, et al.: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000, 343:230–238. A clinical breakthrough on the development of a successful islet transplantation protocol in humans based on a new immunosuppressive protocol, new reagents, and use of adequate islet mass.

    Article  PubMed  CAS  Google Scholar 

  9. Ryan EA, Lakey JRT, Paty BW, et al.: Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002, 51:2148–2157

    Article  PubMed  CAS  Google Scholar 

  10. Laederach-Hofmann K, Bunzel B: Noncompliance in organ transplant recipients: a literature review. Gen Hosp Psychiatry 2000, 22:412–424.

    Article  PubMed  CAS  Google Scholar 

  11. Soulillou JP, Giral M: Controlling the incidence of infection and malignancy by modifying immunosuppression. Transplantation 2001, 72:S89-S93.

    Article  PubMed  CAS  Google Scholar 

  12. Shihab F: Metabolic complications. In Primer on Transplantation. Edited by Norman D, Turka L, Mt. Laurel, NJ: American Society of Transplantation; 2001:247–256.

    Google Scholar 

  13. Starzl TE, Demetris AJ, Murase N, et al.: The lost chord: microchimerism and allograft survival. Immunol Today 1996, 17:577–584

    Article  PubMed  CAS  Google Scholar 

  14. Armstrong HE, Bolton EM, McMillan I, et al.: Prolonged survival of actively enhanced rat renal allografts despite accelerated cellular infiltration and rapid induction of both class I and class II MHC antigens. J Exp Med 1987, 165:891–907

    Article  PubMed  CAS  Google Scholar 

  15. Jenkins MK, Schwartz RH: Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987, 165:302–319.

    Article  PubMed  CAS  Google Scholar 

  16. Grewal IS, Flavell RA: CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998, 16:111–135.

    Article  PubMed  CAS  Google Scholar 

  17. Parker DC, Greiner DL, Phillips NE, et al.: Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci U S A 1995, 92:9560–9564.

    Article  PubMed  CAS  Google Scholar 

  18. Markees TG, Phillips NE, Gordon EJ, et al.: Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4+ T cells, interferon-gamma, and CTLA4. J Clin Invest 1998, 101:2446–2455.

    Article  PubMed  CAS  Google Scholar 

  19. Li Y, Li XC, Zheng XX, et al.: Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med 1999, 5:1298–1302.

    Article  PubMed  CAS  Google Scholar 

  20. Wells AD, Li XC, Li Y, et al.: Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999, 5:1303–1307.

    Article  PubMed  CAS  Google Scholar 

  21. Trambley J, Bingaman AW, Lin A, et al.: Asialo GM1+ CD8+ T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 1999, 104:1715–1722.

    PubMed  CAS  Google Scholar 

  22. Iwakoshi NN, Mordes JP, Markees TG, et al.: Treatment of allograft recipients with donor specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner. J Immunol 2000, 164:512–521.

    PubMed  CAS  Google Scholar 

  23. Iwakoshi NN, Markees TG, Turgeon NA, et al.: Skin allograft maintenance in a new synchimeric model system of tolerance. J Immunol 2001, 167:6623–6630.

    PubMed  CAS  Google Scholar 

  24. Taylor PA, Noelle RJ, Blazar BR: CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 2001, 193:1311–1317.

    Article  PubMed  CAS  Google Scholar 

  25. Hara M, Kingsley CI, Niimi M, et al.: IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001, 166:3789–3796.

    PubMed  CAS  Google Scholar 

  26. Graca L, Thompson S, Lin CY, et al.: Both CD4+CD25+ and CD4+CD25-regulatory cells mediate dominant transplantation tolerance. J Immunol 2002, 168:5558–5565.

    PubMed  CAS  Google Scholar 

  27. Sakaguchi S: Regulatory T cells: Key controllers of immunologic self-tolerance. Cell 2000, 101:455–458.

    Article  PubMed  CAS  Google Scholar 

  28. Welsh RM, Markees TG, Woda BA, et al.: Virus-induced abrogation of transplantation tolerance induced by donorspecific transfusion and anti-CD154 antibody. J Virol 2000, 74:2210–2218. Documented that environmental perturbants, such as virus infection, could compromise the induction of transplantation tolerance and recipient safety, depending on the virus and the timing of infection relative to tolerance induction.

    Article  PubMed  CAS  Google Scholar 

  29. Turgeon NA, Iwakoshi NN, Phillips NE, et al.: Viral infection abrogates CD8+ T-cell deletion induced by costimulation blockade. J Surg Res 2000, 93:63–69.

    Article  PubMed  CAS  Google Scholar 

  30. Sykes M: Mixed chimerism and transplant tolerance. Immunity 2001, 14:417–424.

    Article  PubMed  CAS  Google Scholar 

  31. Locatelli F, Rondelli D, Burgio GR: Tolerance and hematopoietic stem cell transplantation 50 years after Burnet's theory. Exp Hematol 2000, 28:479–489.

    Article  PubMed  CAS  Google Scholar 

  32. Anderlini P, Giralt S, Andersson B, et al.: Allogeneic stem cell transplantation with fludarabine-based, less intensive conditioning regimens as adoptive immunotherapy in advanced Hodgkin's disease. Bone Marrow Transplant 2000, 26:615–620.

    Article  PubMed  CAS  Google Scholar 

  33. Wekerle T, Kurtz J, Sayegh MH, et al.: Peripheral deletion after bone marrow transplantation with costimulatory blockade has features of both activation-induced cell death and passive cell death. J Immunol 2001, 166:2311–2316.

    PubMed  CAS  Google Scholar 

  34. Wekerle T, Sayegh MH, Hill J, et al.: Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med 1998, 187:2037–2044.

    Article  PubMed  CAS  Google Scholar 

  35. Adams AB, Durham MM, Kean L, MA et al.: Costimulation blockade, busulfan, and bone marrow promote titratable macrochimerism, induce transplantation tolerance, and correct genetic hemoglobinopathies with minimal myelosuppression. J Immunol 2001, 167:1103–1111.

    PubMed  CAS  Google Scholar 

  36. Taylor PA, Lees CJ, Waldmann H, et al.: Requirements for the promotion of allogeneic engraftment by anti-CD154 (anti-CD40L) monoclonal antibody under nonmyeloablative conditions. Blood 2001, 98:467–474.

    Article  PubMed  CAS  Google Scholar 

  37. Durham MM, Bingaman AW, Adams AB, et al.: Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J Immunol 2000, 165:1–4.

    PubMed  CAS  Google Scholar 

  38. Wekerle T, Kurtz J, Ito H, et al.: Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 2000, 6:464–469.

    Article  PubMed  CAS  Google Scholar 

  39. FormanD, Welsh RM, Markees TG, et al.: Viral abrogation of stem cell transplantation tolerance causes graft rejection and host death by different mechanisms. J Immunol 2002, 168:6047–6056. Showed that virus infection at the time of transplantation tolerance induction using costimulation blockade prevented engraftment of allogeneic bone marrow and could be fatal.

    PubMed  CAS  Google Scholar 

  40. Williams MA, Tan JT, Adams AB, et al.: Characterization of virus-mediated inhibition of mixed chimerism and allospecific tolerance. J Immunol 2001, 167:4987–4995.

    PubMed  CAS  Google Scholar 

  41. WilliamsMA, Onami TM, Adams AB, et al.: Cutting edge: persistent viral infection prevents tolerance induction and escapes immune control following CD28/CD40 blockadebased regimen. J Immunol 2002, 169:5387–5391. Raised the concern that latent viral infections in the host can affect the generation of hematopoietic chimerism and central tolerance induced by costimulation blockade.

    PubMed  CAS  Google Scholar 

  42. Rossini AA, Mordes JP, Greiner DL, Stoff JS: Islet cell transplantation tolerance. Transplantation 2001, 72:S43-S46.

    PubMed  CAS  Google Scholar 

  43. Sutherland DE, Sibley R, Xu XZ, et al.: Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Physicians 1984, 97:80–87.

    PubMed  CAS  Google Scholar 

  44. Markees TG, Serreze DV, Phillips NE, et al.: NOD mice have a generalized defect in their response to transplantation tolerance induction. Diabetes 1999, 48:967–974.

    Article  PubMed  CAS  Google Scholar 

  45. Molano RD, Berney T, Pileggi A, et al.: Prolonged survival of allogeneic islet grafts in NOD mice treated with a combination of anti-CD45RB and anti-CD154 antibodies. Transplant Proc 2001, 33:248–249.

    Article  PubMed  CAS  Google Scholar 

  46. Kreuwel HT, Biggs JA, Pilip IM, et al.: Defective CD8+ T cell peripheral tolerance in nonobese diabetic mice. J Immunol 2001, 167:1112–1117.

    PubMed  CAS  Google Scholar 

  47. PearsonT, Markees TG, Wicker LS, et al.: NOD congenic mice genetically protected from autoimmune diabetes remain resistant to transplantation tolerance induction. Diabetes 2003, 52:321–326. Genetically separated the autoimmune phenotype from resistance to the induction of transplantation tolerance in NOD mice.

    Article  PubMed  CAS  Google Scholar 

  48. Beilhack GF, Scheffold YC, Weissman IL, et al.: Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes 2003, 52:59–68.

    Article  PubMed  CAS  Google Scholar 

  49. Li H, Kaufman CL, Ildstad ST: Allogeneic chimerism induces donor-specific tolerance to simultaneous islet allografts in nonobese diabetic mice. Surgery 1995, 118:192–198.

    Article  PubMed  CAS  Google Scholar 

  50. SeungE, Iwakoshi N, Woda BA, et al.: Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 2000, 95:2175–2182. Shwed that costimulation blockade could be used to establish hematopoietic chimerism in autoimmune mice, prevent autoimmune recurrence, and permit curative islet transplantation.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seung, E., Mordes, J.P., Greiner, D.L. et al. Induction of tolerance for islet transplantation for type 1 diabetes. Curr Diab Rep 3, 329–335 (2003). https://doi.org/10.1007/s11892-003-0026-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-003-0026-9

Keywords

Navigation