Skip to main content

Advertisement

Log in

Genetics of inflammatory bowel disease and associated cancers

  • Published:
Current Colorectal Cancer Reports

Abstract

The inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis, result from an altered host response to intestinal flora, and genome-wide searches have identified a number of disease susceptibility alleles, such as NOD2/CARD15. IBD confers a high risk of development of a number of malignancies, especially colorectal cancer, and this risk is related to chronic inflammation. Genomic instability in the form of gross chromosomal changes is common, with microsatellite instability occurring in a small subset of colitis-associated lesions. The carcinogenesis pathway in colitis-associated cancers is less clearly understood than its sporadic counterpart. Mutations in the APC gene appear to be less frequent and occur later, whereas inflammation-induced p53 mutations are found early in nondysplastic tissue. Selection and clonal expansion of inflammation-induced mutations is likely to account for the high mutational load seen in carcinoma tissue. Development of an effective biomarker to predict development of malignancy in colitis has so far been unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Greenstein A: Cancer in inflammatory bowel disease. Mt Sinai J Med 2000, 67:227–240.

    PubMed  CAS  Google Scholar 

  2. Vogelstein B, Fearon ER, Hamilton SR, et al.: Genetic alterations during colorectal-tumor development. N Engl J Med 1988, 319:525–532.

    Article  PubMed  CAS  Google Scholar 

  3. Shivananda S, Lennard-Jones J, Logan R, et al.: Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European collaborative study on inflammatory bowel disease (EC-IBD). Gut 1996, 39:690–697.

    PubMed  CAS  Google Scholar 

  4. Orholm M, Binder V, Sorensen T, et al.: Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol 2000, 35:1075–1081.

    Article  PubMed  CAS  Google Scholar 

  5. Bonen D, Cho J: The genetics of inflammatory bowel disease. Gastroenterology 2003, 124:521–536.

    Article  PubMed  CAS  Google Scholar 

  6. Mathew C, Lewis C: Genetics of inflammatory bowel disease: progress and prospects. Hum Mol Genet 2004,13:R161–168. An excellent review on the search for the IBD loci and the pathogenetics of the NOD2/CARD15 gene.

    Article  PubMed  CAS  Google Scholar 

  7. van Heel D, Fisher S, Kirby A, et al.: Inflammatory bowel disease susceptibility loci defined by genome scan metaanalysis of 1952 affected relative pairs. Hum Mol Genet 2004, 13:763–770.

    Article  PubMed  CAS  Google Scholar 

  8. Hugot J, Laurent-Puig P, Gower-Rousseau C, et al.: Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996, 379:821–823.

    Article  PubMed  CAS  Google Scholar 

  9. Ogura Y, Bonen D, Inohara N, et al.: A frameshift mutation in nod2 associated with susceptibility to Crohn’s disease. Nature 2001, 411:603–606.

    Article  PubMed  CAS  Google Scholar 

  10. Gaya D, Russell R, Nimmo E, et al.: New genes in inflammatory bowel disease: lessons for complex diseases? Lancet 2006, 367:1271–1284.

    Article  PubMed  CAS  Google Scholar 

  11. Fellerman K, Stange DE, Schaeffeler E, et al.: A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006, 79:439–448.

    Article  Google Scholar 

  12. Yap L, Ahmad T, Jewell D: The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract Res Clin Gastroenterol 2004, 18:577–596.

    Article  PubMed  CAS  Google Scholar 

  13. Stokkers P, Reitsma P, Tytgat G, et al.: HLA-dr and -dq phenotypes in inflammatory bowel disease: a meta-analysis. Gut 1999, 45:395–401.

    Article  PubMed  CAS  Google Scholar 

  14. Roussomoustakaki M, Satsangi J, Welsh K, et al.: Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology 1997, 112:1845–1853.

    Article  PubMed  CAS  Google Scholar 

  15. Rioux J, Silverberg M, Daly M, et al.: Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000,66:1863–1870.

    Article  PubMed  CAS  Google Scholar 

  16. Rhodes J: Unifying hypothesis for inflammatory bowel disease and associated colon cancer: sticking the pieces together with sugar. Lancet 1996, 347:40–44.

    Article  PubMed  CAS  Google Scholar 

  17. Askling J, Dickman P, Karlen P, et al.: Colorectal cancer rates among first-degree relatives of patients with inflammatory bowel disease: a population-based cohort study. Lancet 2001, 357:262–266.

    Article  PubMed  CAS  Google Scholar 

  18. Ekbom A, Helmick C, Zack M, et al.: Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990,323:1228–1233.

    Article  PubMed  CAS  Google Scholar 

  19. Rutter M, Saunders B, Wilkinson K, et al.: Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 2004, 126:451–459.

    Article  PubMed  Google Scholar 

  20. Gillen C, Walmsley R, Prior P, et al.: Ulcerative colitis and Crohn’s disease: a comparison of the colorectal cancer risk in extensive colitis. Gut 1994, 35:1590–1592.

    PubMed  CAS  Google Scholar 

  21. Bernstein C, Blanchard J, Kliewer E, et al.: Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 2001, 91:854–862.

    Article  PubMed  CAS  Google Scholar 

  22. Broome U, Lofberg R, Veress B, et al.: Primary sclerosing cholangitis and ulcerative colitis: evidence for increased neoplastic potential. Hepatology 1995, 22:1404–1408.

    PubMed  CAS  Google Scholar 

  23. Kandiel A, Fraser A, Korelitz B, et al.: Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut 2005, 54:1121–1125.

    Article  PubMed  CAS  Google Scholar 

  24. Ljung T, Karlen P, Schmidt D, et al.: Infliximab in inflammatory bowel disease: clinical outcome in a population based cohort from stockholm county. Gut 2004, 53:849–853.

    Article  PubMed  CAS  Google Scholar 

  25. Langholz E, Munkholm P, Davidsen M, et al.: Colorectal cancer risk and mortality in patients with ulcerative colitis. Gastroenterology 1992, 103:1444–1451.

    PubMed  CAS  Google Scholar 

  26. Eaden J: The data supporting a role for aminosalicylates in the chemoprevention of colorectal cancer in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2003, 18(Suppl2):15–21.

    Article  PubMed  CAS  Google Scholar 

  27. van Staa T, Card T, Logan R, et al.: 5-aminosalicylate use and colorectal cancer risk in inflammatory bowel disease: a large epidemiological study. Gut 2005, 54:1573–1578.

    Article  PubMed  CAS  Google Scholar 

  28. Allgayer H: Mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment Pharmacol Ther 2003,18(Suppl 2):10–14.

    Article  PubMed  CAS  Google Scholar 

  29. Loeb K, Loeb L: Genetic instability and the mutator phenotype. Studies in ulcerative colitis. Am J Pathol 1999, 154:1621–1626.

    PubMed  CAS  Google Scholar 

  30. Aust D, Willenbucher R, Terdiman J, et al.: Chromosomal alterations in ulcerative colitis-related and sporadic colorectal cancers by comparative genomic hybridization. Hum Pathol 2000, 31:109–114.

    Article  PubMed  CAS  Google Scholar 

  31. Willenbucher RF, Aust DE, Chang CG, et al.: Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 1999, 154:1825–1830.

    PubMed  CAS  Google Scholar 

  32. Willenbucher R, Zelman S, Ferrell L, et al.: Chromosomal alterations in ulcerative colitis-related neoplastic progression. Gastroenterology 1997, 113:791–801.

    Article  PubMed  CAS  Google Scholar 

  33. Melville DM, Jass JR, Shepherd NA, et al.: Dysplasia and deoxyribonucleic acid aneuploidy in the assessment of precancerous changes in chronic ulcerative colitis. Observer variation and correlations. Gastroenterology 1988, 95:668–675.

    PubMed  CAS  Google Scholar 

  34. Rabinovitch P, Dziadon S, Brentnall T, et al.: Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res 1999, 59:5148–5153.

    PubMed  CAS  Google Scholar 

  35. Clausen O, Andersen S, Stroomkjaer H, et al.: A strategy combining flow sorting and comparative genomic hybridization for studying genetic aberrations at different stages of colorectal tumorigenesis in ulcerative colitis. Cytometry 2001, 43:46–54.

    Article  PubMed  CAS  Google Scholar 

  36. Willenbucher R, Aust D, Chang C, et al.: Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 1999, 154:1825–1830.

    PubMed  CAS  Google Scholar 

  37. Rubin C, Haggitt R, Burmer G, et al.: Dna aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology 1992, 103:1611–1620.

    PubMed  CAS  Google Scholar 

  38. O’Sullivan JN, Bronner MP, Brentnall TA, et al.: Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 2002, 32:280–284.

    Article  PubMed  CAS  Google Scholar 

  39. Cahill D, Lengauer C, Yu J, et al.: Mutations of mitotic checkpoint genes in human cancers. Nature 1998, 392:300–303.

    Article  PubMed  CAS  Google Scholar 

  40. Seril DN, Liao J, Yang GY, et al.: Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 2003, 24:353–362.

    Article  PubMed  CAS  Google Scholar 

  41. Brentnall T, Rubin C, Crispin D, et al.: A germline substitution in the human msh2 gene is associated with high-grade dysplasia and cancer in ulcerative colitis. Gastroenterology 1995, 109:151–155.

    Article  PubMed  CAS  Google Scholar 

  42. Brentnall TA, Crispin DA, Bronner MP, et al.: Microsatellite instability in non-neoplastic mucosa from patients with chronic ulcerative colitis. Cancer Res 1996, 56:1237–1240.

    PubMed  CAS  Google Scholar 

  43. Cawkwell L, Sutherland F, Murgatroyd H, et al.: Defective hMSH2/hMLH1 protein expression is seen infrequently in ulcerative colitis associated colorectal cancers. Gut 2000, 46:367–369.

    Article  PubMed  CAS  Google Scholar 

  44. Jones P, Laird P: Cancer epigenetics comes of age. Nat Genet 1999, 21:163–167.

    Article  PubMed  CAS  Google Scholar 

  45. Hsieh C, Klump B, Holzmann K, et al.: Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res 1998, 58:3942–3945.

    PubMed  CAS  Google Scholar 

  46. Wheeler J, Kim H, Efstathiou J, et al.: Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut 2001, 48:367–371.

    Article  PubMed  CAS  Google Scholar 

  47. Fleisher A, Esteller M, Harpaz N, et al.: Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res 2000, 60:4864–4868.

    PubMed  CAS  Google Scholar 

  48. Issa JP, Ahuja N, Toyota M, et al.: Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 2001, 61:3573–3577.

    PubMed  CAS  Google Scholar 

  49. Itzkowitz S, Yio X: Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 2004, 287:G7–17.

    Article  PubMed  CAS  Google Scholar 

  50. Powell SM, Zilz N, Beazer-Barclay Y, et al.: APC mutations occur early during colorectal tumorigenesis. Nature 1992, 359:235–237.

    Article  PubMed  CAS  Google Scholar 

  51. Miyoshi Y, Nagase H, Ando H, et al.: Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992, 1:229–233.

    Article  PubMed  CAS  Google Scholar 

  52. Aust DE, Terdiman JP, Willenbucher RF, et al.: The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer 2002, 94:1421–1427.

    Article  PubMed  CAS  Google Scholar 

  53. Tarmin L, Yin J, Harpaz N, et al.: Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res 1995,55:2035–2038.

    PubMed  CAS  Google Scholar 

  54. Fogt F, Vortmeyer A, Goldman H, et al.: Comparison of genetic alterations in colonic adenoma and ulcerative colitis-associated dysplasia and carcinoma. Hum Pathol 1998,29:131–136.

    Article  PubMed  CAS  Google Scholar 

  55. Umetani N, Sasaki S, Watanabe T, et al.: Genetic alterations in ulcerative colitis-associated neoplasia focusing on APC, K-ras gene and microsatellite instability. Jpn J Cancer Res 1999, 90:1081–1087.

    PubMed  CAS  Google Scholar 

  56. Tomlinson I, Ilyas M, Johnson V, et al.: A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer. J Pathol 1998, 184:148–152.

    Article  PubMed  CAS  Google Scholar 

  57. Lamlum H, Ilyas M, Rowan A, et al.: The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s “two-hit” hypothesis. Nat Med 1999, 5:1071–1075.

    Article  PubMed  CAS  Google Scholar 

  58. Brentnall T, Crispin D, Rabinovitch P, et al.: Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 1994, 107:369–378.

    PubMed  CAS  Google Scholar 

  59. Hussain S, Amstad P, Raja K, et al.: Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 2000,60:3333–3337.

    PubMed  CAS  Google Scholar 

  60. Yoshida T, Mikami T, Mitomi H, et al.: Diverse p53 alterations in ulcerative colitis-associated low-grade dysplasia: full-length gene sequencing in microdissected single crypts. J Pathol 2003, 199:166–175. In this paper individual crypt microdissection and nested PCR reveals numerous p53 point mutations in nondysplastic regenerative tissue. This provides a useful indication that p53 gene mutations occur early in the colitis-associated carcinogenesis pathway.

    Article  PubMed  CAS  Google Scholar 

  61. Yin J, Harpaz N, Tong Y, et al.: p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterology 1993, 104:1633–1639.

    PubMed  CAS  Google Scholar 

  62. Burmer G, Rabinovitch P, Haggitt R, et al.: Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterology 1992,103:1602–1610.

    PubMed  CAS  Google Scholar 

  63. Ezaki T, Watanabe M, Inoue N, et al.: A specific genetic alteration on chromosome 6 in ulcerative colitis-associated colorectal cancers. Cancer Res 2003, 63:3747–3749.

    PubMed  CAS  Google Scholar 

  64. Tomlinson I, Sasieni P, Bodmer W: How many mutations in a cancer? Am J Pathol 2002, 160:755–758.

    PubMed  Google Scholar 

  65. Chen R, Rabinovitch PS, Crispin DA, et al.: DNA fingerprinting abnormalities can distinguish ulcerative colitis patients with dysplasia and cancer from those who are dysplasia/cancer-free. Am J Pathol 2003, 162:665–672. This paper explores the concept of the UC progressor and nonprogressor and uses DNA fingerprinting techniques to categorize patients.

    PubMed  CAS  Google Scholar 

  66. Chen R, Rabinovitch P, Crispin D, et al.: The initiation of colon cancer in a chronic inflammatory setting. Carcinogenesis 2005, 26:1513–1519.

    Article  PubMed  CAS  Google Scholar 

  67. Tomlinson I, Bodmer W: Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 1999,5:11–12.

    Article  PubMed  CAS  Google Scholar 

  68. Yatabe Y, Tavare S, Shibata D: Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci USA 2001, 98:10839–10844.

    Article  PubMed  CAS  Google Scholar 

  69. Greaves L, Preston S, Tadrous P, et al.: Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA 2006, 103:714–719.

    Article  PubMed  CAS  Google Scholar 

  70. Park HS, Goodlad RA, Wright NA: Crypt fission in the small intestine and colon. A mechanism for the emergence of gépd locus-mutated crypts after treatment with mutagens. Am J Pathol 1995, 147:1416–1427.

    PubMed  CAS  Google Scholar 

  71. Wong WM, Mandir N, Goodlad RA, et al.: Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission. Gut 2002, 50:212–217.

    Article  PubMed  Google Scholar 

  72. Rutter M, Saunders B, Wilkinson K, et al.: Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006, 130:1030–1038.

    Article  PubMed  Google Scholar 

  73. Tahara T, Inoue N, Hisamatsu T, et al.: Clinical significance of microsatellite instability in the inflamed mucosa for the prediction of colonic neoplasms in patients with ulcerative colitis. J Gastroenterol Hepatol 2005, 20:710–715.

    Article  PubMed  CAS  Google Scholar 

  74. Tominaga K, Fujii S, Mukawa K, et al.: Prediction of colorectal neoplasia by quantitative methylation analysis of estrogen receptor gene in nonneoplastic epithelium from patients with ulcerative colitis. Clin Cancer Res 2005, 11:8880–8885.

    Article  PubMed  CAS  Google Scholar 

  75. Lang S, Stratakis D, Heinzlmann M, et al.: Molecular screening of patients with long standing extensive ulcerative colitis: detection of p53 and Ki-ras mutations by single strand conformation polymorphism analysis and differential hybridisation in colonic lavage fluid. Gut 1999, 44:822–825.

    Article  PubMed  CAS  Google Scholar 

  76. Sidransky D, Tokino T, Hamilton S, et al.: Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 1992, 256:102–105.

    Article  PubMed  CAS  Google Scholar 

  77. Egan L, Derijks L, Hommes D: Pharmacogenomics in inflammatory bowel disease. Clin Gastroenterol Hepatol 2006,4:21–28.

    Article  PubMed  CAS  Google Scholar 

  78. Jess T, Loftus EJ, Velayos F, et al.: Risk of intestinal cancer in inflammatory bowel disease: a population-based study from Olmsted County, Minnesota. Gastroenterology 2006, 130:1039–1046.

    Article  PubMed  Google Scholar 

  79. Satsangi J, Parkes M, Louis E, et al.: Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996,14:199–202.

    Article  PubMed  CAS  Google Scholar 

  80. Hampe J, Schreiber S, Shaw S, et al.: A genome-wide analysis provides evidence for novel linkages in inflammatory bowel disease in a large european cohort. Am J Hum Genet 1999, 64:808–816.

    Article  PubMed  CAS  Google Scholar 

  81. Ma Y, Ohmen J, Li Z, et al.: A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis 1999, 5:271–278.

    Article  PubMed  CAS  Google Scholar 

  82. Duerr R, Barmada M, Zhang L, et al.: High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12. Am J Hum Genet 2000, 66:1857–1862.

    Article  PubMed  CAS  Google Scholar 

  83. Cho J, Nicolae D, Gold L, et al.: Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 1998, 95:7502–7507.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Leedham BSc, MRCP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leedham, S.J., Jankowski, J.A., Wright, N.A. et al. Genetics of inflammatory bowel disease and associated cancers. Curr colorectal cancer rep 2, 191–199 (2006). https://doi.org/10.1007/s11888-006-0022-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-006-0022-y

Keywords

Navigation