Skip to main content

Advertisement

Log in

Pleiotropy of PCSK9: Functions in Extrahepatic Tissues

  • Lipid Abnormalities and Cardiovascular Prevention (ED Michos, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a central role in the metabolism of LDL receptors and mainly acts in the liver. However, there are accumulating data that PCSK9 involves in several functions in different organs beyond the liver. Herein we aimed to summarize the effects of PCSK9 in tissues other than the liver.

Recent Findings

PCSK9 has crucial roles in heart, brain and kidney in addition to the cholesterol metabolism. Targeting PCSK9 for the treatment of hypercholesterolemia is effective in the prevention from cardiovascular diseases and PCSK9 inhibitors are getting to be administered in more cases. Therefore understanding the effects of PCSK9 in other tissues gained importance in the use of PCSK9 inhibitors era.

Summary

PCSK9 participates in cardiac, renal, and neurologic functions however, current literature reveals that use of PSCSK9 inhibitors have beneficial or neutral effects on these organs. Inhibition of PCSK9 is assigned to be associated with new onset diabetes in experimental studies whereas real world data with PCSK9 inhibitors established no relationship between PCSK9 inhibitors and new onset diabetes. PCSK9 might be used as a target for the treatment of nephrotic syndrome and heart failure in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337.

    Article  PubMed  Google Scholar 

  2. Shapiro MD, Tavori H, Fazio S. PCSK9: From Basic Science Discoveries to Clinical Trials. Circ Res. 2018;122:1420–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferri N. Proprotein convertase subtilisin/kexin type 9: from the discovery to the development of new therapies for cardiovascular diseases. Scientifica (Cairo). 2012;2012: 927352.

    PubMed  Google Scholar 

  4. Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283:2363–72.

    Article  CAS  PubMed  Google Scholar 

  5. Chiang LW, Grenier JM, Ettwiller L, et al. An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis. Proc Natl Acad Sci U S A. 2001;98:2814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Connell EM, Lohoff FW. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in the Brain and Relevance for Neuropsychiatric Disorders. Front Neurosci. 2020;14:609.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100:928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poirier S, Prat A, Marcinkiewicz E, et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J Neurochem. 2006;98:838–50.

    Article  CAS  PubMed  Google Scholar 

  9. An D, Wei X, Li H, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci Rep. 2015;5:17559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zimetti F, Caffarra P, Ronda N, et al. Increased PCSK9 Cerebrospinal Fluid Concentrations in Alzheimer’s Disease. J Alzheimers Dis. 2017;55:315–20.

    Article  CAS  PubMed  Google Scholar 

  11. Picard C, Poirier A, Bélanger S, Labonté A, Auld D, Poirier J. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in Alzheimer’s disease: A genetic and proteomic multi-cohort study. PLoS ONE. 2019;14: e0220254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma SL, Ng HK, Baum L, et al. Low-density lipoprotein receptor-related protein 8 (apolipoprotein E receptor 2) gene polymorphisms in Alzheimer’s disease. Neurosci Lett. 2002;332:216–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rousselet E, Marcinkiewicz J, Kriz J, et al. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. J Lipid Res. 2011;52:1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. •• Rohrbach S, Li L, Novoyatleva T, et al. Impact of PCSK9 on CTRP9-Induced Metabolic Effects in Adult Rat Cardiomyocytes. Front Physiol. 2021;12:593862. Findings of this study suggests that PCSK9 regulates myocardial energy metabolism and exogenous PCSK9 inhibits the uptake of free fatty acids from cardiomyocytes which may play a significant role in heart failure pathogenesis.

  15. Jonas MC, Costantini C, Puglielli L. PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep. 2008;9:916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benn M, Nordestgaard BG, Frikke-Schmidt R, Tybjærg-Hansen A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ. 2017;357: j1648.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Han DF, Ma JH, Hao CG, Tuerhong T, Du L, Zhang XN. Association and differences in genetic polymorphisms in PCSK9 gene in subjects with lacunar infarction in the Han and Uygur populations of Xinjiang Uygur Autonomous Region of China. Neural Regen Res. 2017;12:1315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen YQ, Troutt JS, Konrad RJ. PCSK9 is present in human cerebrospinal fluid and is maintained at remarkably constant concentrations throughout the course of the day. Lipids. 2014;49:445–55.

    Article  CAS  PubMed  Google Scholar 

  19. Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, Lohoff FW. Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function. J Am Coll Cardiol. 2022;80:653–62.

    Article  CAS  PubMed  Google Scholar 

  20. Giugliano RP, Mach F, Zavitz K, et al. Cognitive Function in a Randomized Trial of Evolocumab. N Engl J Med. 2017;377:633–43.

    Article  CAS  PubMed  Google Scholar 

  21. Janik MJ, Urbach DV, van Nieuwenhuizen E, et al. Alirocumab treatment and neurocognitive function according to the CANTAB scale in patients at increased cardiovascular risk: A prospective, randomized, placebo-controlled study. Atherosclerosis. 2021;331:20–7.

    Article  CAS  PubMed  Google Scholar 

  22. Gencer B, Mach F, Guo J, et al. Cognition After Lowering LDL-Cholesterol With Evolocumab. J Am Coll Cardiol. 2020;75:2283–93.

    Article  CAS  PubMed  Google Scholar 

  23. O’Donoghue ML, Giugliano RP, Wiviott SD, et al. Long-Term Evolocumab in Patients With Established Atherosclerotic Cardiovascular Disease. Circulation. 2022;146:1109–19.

    Article  CAS  PubMed  Google Scholar 

  24. Chemello K, Jaafar AK, Lambert G. Heart to heart with PCSK9. Eur Heart J. 2021;42:3091–3.

    Article  PubMed  Google Scholar 

  25. Akhmedov A, Rozenberg I, Paneni F, et al. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. Eur Heart J. 2014;35:2839–48.

    Article  CAS  PubMed  Google Scholar 

  26. Ding Z, Wang X, Liu S, et al. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res. 2018;114:1738–51.

    Article  CAS  PubMed  Google Scholar 

  27. Palee S, McSweeney CM, Maneechote C, et al. PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. J Cell Mol Med. 2019;23:7310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu LS, Bai XQ, Gao Y, et al. PCSK9 Promotes oxLDL-Induced PC12 Cell Apoptosis Through the Bcl-2/Bax-Caspase 9/3 Signaling Pathway. J Alzheimers Dis. 2017;57:723–34.

    Article  CAS  PubMed  Google Scholar 

  29. Trankle CR, Wohlford G, Buckley LF, et al. Alirocumab in Acute Myocardial Infarction: Results From the Virginia Commonwealth University Alirocumab Response Trial (VCU-AlirocRT). J Cardiovasc Pharmacol. 2019;74:266–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Li X, Liu S, et al. PCSK9 regulates pyroptosis via mtDNA damage in chronic myocardial ischemia. Basic Res Cardiol. 2020;115:66.

    Article  CAS  PubMed  Google Scholar 

  31. Chen X, Xu S, Zhao C, Liu B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun. 2019;516:37–43.

    Article  CAS  PubMed  Google Scholar 

  32. Tang ZH, Peng J, Ren Z, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis. 2017;262:113–22.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14:381–95.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Q, Zhao YM, He NQ, et al. PCSK9: A emerging participant in heart failure. Biomed Pharmacother. 2023;158: 114106.

    Article  CAS  PubMed  Google Scholar 

  35. Andreadou I, Tsoumani M, Vilahur G, et al. PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Front Physiol. 2020;11: 602497.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zeng C, Duan F, Hu J, et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 2020;34: 101523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei H, Bu R, Yang Q, et al. Exendin-4 Protects against Hyperglycemia-Induced Cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway. J Diabetes Res. 2019;2019:8905917.

    Article  PubMed  PubMed Central  Google Scholar 

  38. White HD, Schwartz GG, Szarek M, et al. Alirocumab after acute coronary syndrome in patients with a history of heart failure. Eur Heart J. 2022;43:1554–65.

    Article  CAS  PubMed  Google Scholar 

  39. •• Ramin-Mangata S, Thedrez A, Nativel B, et al. Effects of proprotein convertase subtilisin kexin type 9 modulation in human pancreatic beta cells function. Atherosclerosis. 2021;326:47–55. Findings from this study reveals that despite PCSK9 regulates LDLR density in beta cells, PSCK9 inhibition does not affect insulin secretion.

  40. Carugo S, Sirtori CR, Corsini A, Tokgozoglu L, Ruscica M. PCSK9 Inhibition and Risk of Diabetes: Should We Worry? Curr Atheroscler Rep. 2022;24:995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Da Dalt L, Ruscica M, Bonacina F, et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J. 2019;40:357–68.

    Article  PubMed  Google Scholar 

  42. Schmidt AF, Holmes MV, Preiss D, et al. Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. BMC Cardiovasc Disord. 2019;19:240.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. N Engl J Med. 2016;375:2144–53.

    Article  CAS  PubMed  Google Scholar 

  44. Lotta LA, Sharp SJ, Burgess S, et al. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes: A Meta-analysis. JAMA. 2016;316:1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cupido AJ, Reeskamp LF, Hingorani AD, et al. Joint Genetic Inhibition of PCSK9 and CETP and the Association With Coronary Artery Disease: A Factorial Mendelian Randomization Study. JAMA Cardiol. 2022;7:955–64.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Soremekun O, Karhunen V, He Y, et al. Lipid traits and type 2 diabetes risk in African ancestry individuals: A Mendelian Randomization study. EBioMedicine. 2022;78: 103953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  49. Haas ME, Levenson AE, Sun X, et al. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation. 2016;134:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin K, Park BS, Kim YW, Vaziri ND. Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis. 2014;63:584–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kwakernaak AJ, Lambert G, Slagman MC, et al. Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis. 2013;226:459–65.

    Article  CAS  PubMed  Google Scholar 

  52. Okamura DM, Pennathur S, Pasichnyk K, et al. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol. 2009;20:495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Byun JH, Lebeau PF, Platko K, et al. Inhibitory Antibodies against PCSK9 Reduce Surface CD36 and Mitigate Diet-Induced Renal Lipotoxicity. Kidney360. 2022;3:1394–1410.

  54. Berger JM, Vaillant N, Le May C, et al. PCSK9-deficiency does not alter blood pressure and sodium balance in mouse models of hypertension. Atherosclerosis. 2015;239:252–9.

    Article  CAS  PubMed  Google Scholar 

  55. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  CAS  PubMed  Google Scholar 

  56. Cesaro A, Bianconi V, Gragnano F, et al. Beyond cholesterol metabolism: The pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Genetics, mutations, expression, and perspective for long-term inhibition. Biofactors. 2020;46:367–80.

  57. Igweonu-Nwakile EO, Ali S, Paul S, et al. A Systematic Review on the Safety and Efficacy of PCSK9 Inhibitors in Lowering Cardiovascular Risks in Patients With Chronic Kidney Disease. Cureus. 2022;14: e29140.

    PubMed  PubMed Central  Google Scholar 

  58. Le May C, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.

    Article  PubMed  Google Scholar 

  59. Leblond F, Seidah NG, Précourt LP, Delvin E, Dominguez M, Levy E. Regulation of the proprotein convertase subtilisin/kexin type 9 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2009;296:G805–15.

    Article  CAS  PubMed  Google Scholar 

  60. Langhi C, Le May C, Kourimate S, et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett. 2008;582:949–55.

    Article  CAS  PubMed  Google Scholar 

  61. Veilleux A, Grenier E, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler Thromb Vasc Biol. 2014;34:644–53.

    Article  CAS  PubMed  Google Scholar 

  62. Levy E, Lalonde G, Delvin E, et al. Intestinal and hepatic cholesterol carriers in diabetic Psammomys obesus. Endocrinology. 2010;151:958–70.

    Article  CAS  PubMed  Google Scholar 

  63. Cariou B, Si-Tayeb K, Le May C. Role of PCSK9 beyond liver involvement. Curr Opin Lipidol. 2015;26:155–61.

    Article  CAS  PubMed  Google Scholar 

  64. Le May C, Berger JM, Lespine A, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33:1484–93.

    Article  PubMed  Google Scholar 

  65. Ding Z, Liu S, Wang X, et al. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal. 2015;22:760–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferri N, Tibolla G, Pirillo A, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220:381–6.

    Article  CAS  PubMed  Google Scholar 

  67. Kühnast S, van der Hoorn JW, Pieterman EJ, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Ziya Şener.

Ethics declarations

Conflict of Interest

Lale TOKGÖZOĞLU has received honoraria for lectures and consultancy from Abbott, Pfizer, Recordati, Astra Zeneca, Novartis, Sanofi, Novo Nordisk, MSD, Amgen, Bayer, Daiichi Sankyo, and Janssen. She also participated in clinical trials sponsored by Novo Nordisk, Novartis, MSD, and Amgen. Yusuf Ziya ŞENER has no conflict of interest do declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şener, Y.Z., Tokgözoğlu, L. Pleiotropy of PCSK9: Functions in Extrahepatic Tissues. Curr Cardiol Rep 25, 979–985 (2023). https://doi.org/10.1007/s11886-023-01918-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01918-2

Keywords

Navigation