Skip to main content
Log in

Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence

  • Lipid Abnormalities and Cardiovascular Prevention (ed Michos, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Omega-3 fatty acids (n-3 FA) lower triglycerides, have anti-inflammatory properties, and improve metabolism. Clinical evidence of cardiovascular benefit with omega-3 fatty acids is mixed. We discuss mechanisms providing biological plausibility of benefit of omega-3 fatty acids in cardiovascular risk reduction and review clinical trials investigating the benefits of prescription omega-3 fatty acids in dyslipidemia, atherosclerotic cardiovascular disease (ASCVD), and diabetes.

Recent Findings

Although early trials showed no benefit of omega-3 fatty acids in ASCVD, the REDUCE-IT trial noted significant risk reduction in ASCVD events with highly purified EPA (icosapent ethyl) use which has changed the landscape for currently available therapeutic options. However, other large trials like STRENGTH and VITAL, which used different formulations of prescription omega-3 fatty acids, did not note significant cardiovascular risk reduction. Thus the effectiveness of omega-3 fatty acids for cardiovascular disease prevention is an ongoing topic of debate. A relative paucity of studies examining benefits for glycemic outcomes in persons with diabetes exists; however, few studies have suggested lack of benefit to date.

Summary

Significant residual cardiovascular risk exists for individuals with hypertriglyceridemia. Prescription omega-3 fatty acids are more commonly used for CV risk reduction in these patients. Clinical guideline statements now recommend icosapent ethyl use for selected individuals with hypertriglyceridemia to reduce cardiovascular events given recent evidence from the REDUCE-IT trial. Nonetheless, data from other large scale trials has been mixed, and future research is needed to better understand how different preparations of omega-3 may differ in their cardiovascular and metabolic effects, and the mechanisms for their benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parikh P, McDaniel MC, Ashen MD, Miller JI, Sorrentino M, Chan V, et al. Diets and Cardiovascular Disease: An Evidence-Based Assessment. J Am Coll Cardiol. 2005;45(9):1379–87.

    Article  CAS  PubMed  Google Scholar 

  2. Keys A Kea. Seven Countries Study. 1958- Current. https://www.sevencountriesstudy.com/. Accessed on 22 Sept 2022.

  3. Kromhout D, Bosschieter EB, de Lezenne CC. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med. 1985;312(19):1205–9.

    Article  CAS  PubMed  Google Scholar 

  4. Yamagishi K, Iso H, Date C, Fukui M, Wakai K, Kikuchi S, et al. Fish, omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J Am Coll Cardiol. 2008;52(12):988–96.

    Article  CAS  PubMed  Google Scholar 

  5. Strobel C, Jahreis G, Kuhnt K. Survey of n- 3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis. 2012;11(1):144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bang HO, Dyerberg J, Hjøorne N. The composition of food consumed by Greenland Eskimos. Acta Med Scand. 1976;200(1–2):69–73.

    CAS  PubMed  Google Scholar 

  7. Kim YS, Xun P, Iribarren C, Van Horn L, Steffen L, Daviglus ML, et al. Intake of fish and long-chain omega-3 polyunsaturated fatty acids and incidence of metabolic syndrome among American young adults: a 25-year follow-up study. Eur J Nutr. 2016;55(4):1707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marckmann P, Grønbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. Eur J Clin Nutr. 1999;53(8):585–90.

  9. Scherr C, Figueiredo VN, Moura FA, Sposito AC. Not simply a matter of fish intake. Curr Vasc Pharmacol. 2015;13(5):676–8.

    Article  CAS  PubMed  Google Scholar 

  10. Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens (Greenwich). 2011;13(8):621–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kleiner AC, Cladis DP, Santerre CR. A comparison of actual versus stated label amounts of EPA and DHA in commercial omega-3 dietary supplements in the United States. J Sci Food Agric. 2015;95(6):1260–7.

    Article  CAS  PubMed  Google Scholar 

  12. Brunton S, Collins N. Differentiating prescription omega-3-acid ethyl esters (P-OM3) from dietary-supplement omega-3 fatty acids. Curr Med Res Opin. 2007;23(5):1139–45.

    Article  CAS  PubMed  Google Scholar 

  13. Hilleman D, Smer A. Prescription omega-3 fatty acid products and dietary supplements are not interchangeable. Manag Care. 2016;25(1):46–52.

    PubMed  Google Scholar 

  14. Mason RP, Sherratt SCR. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochem Biophys Res Commun. 2017;483(1):425–9.

    Article  CAS  PubMed  Google Scholar 

  15. Harris WS, Dujovne CA, Zucker M, Johnson B. Effects of a low saturated fat, low cholesterol fish oil supplement in hypertriglyceridemic patients. A placebo-controlled trial Ann Intern Med. 1988;109(6):465–70.

    Article  CAS  PubMed  Google Scholar 

  16. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and Meta-analysis. JAMA. 2012;308(10):1024–33.

    Article  CAS  PubMed  Google Scholar 

  17. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  CAS  PubMed  Google Scholar 

  18. Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids. 1999;34(12):1297–304.

    Article  CAS  PubMed  Google Scholar 

  19. Schaefer MB, Schaefer CA, Schifferings S, Kuhlmann CR, Urban A, Benscheid U, et al. N-3 vs. n-6 fatty acids differentially influence calcium signalling and adhesion of inflammatory activated monocytes: impact of lipid rafts. Inflamm Res. 2016;65(11):881–94.

  20. Williams JA, Batten SE, Harris M, Rockett BD, Shaikh SR, Stillwell W, et al. Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains. Biophys J. 2012;103(2):228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaikh SR. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J Nutr Biochem. 2012;23(2):101–5.

    Article  CAS  PubMed  Google Scholar 

  22. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung UJ, Torrejon C, Chang CL, Hamai H, Worgall TS, Deckelbaum RJ. Fatty acids regulate endothelial lipase and inflammatory markers in macrophages and in mouse aorta: a role for PPARgamma. Arterioscler Thromb Vasc Biol. 2012;32(12):2929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LC, Geleijnse JM, et al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009;90(2):415–24.

    Article  CAS  PubMed  Google Scholar 

  25. Gillies PJ, Bhatia SK, Belcher LA, Hannon DB, Thompson JT, Vanden Heuvel JP. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil. J Lipid Res. 2012;53(8):1679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao LG, Cao J, Mao QX, Lu XC, Zhou XL, Fan L. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis. 2013;226(2):328–34.

    Article  CAS  PubMed  Google Scholar 

  27. Larson MK, Tormoen GW, Weaver LJ, Luepke KJ, Patel IA, Hjelmen CE, et al. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation. Am J Physiol Cell Physiol. 2013;304(3):C273–9.

    Article  CAS  PubMed  Google Scholar 

  28. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwab JM, Chiang N, Arita M, Serhan CN. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature. 2007;447(7146):869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Investig. 2018;128(7):2657–69.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164(4):1663–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lamaziere A, Wolf C, Barbe U, Bausero P, Visioli F. Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;88(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  34. Wong AT, Chan DC, Ooi EM, Ng TW, Watts GF, Barrett PH. Omega-3 fatty acid ethyl ester supplementation decreases very-low-density lipoprotein triacylglycerol secretion in obese men. Clin Sci (Lond). 2013;125(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  35. Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res. 2003;44(3):455–63.

    Article  PubMed  Google Scholar 

  36. Guo W, Xie W, Lei T, Hamilton JA. Eicosapentaenoic acid, but not oleic acid, stimulates beta-oxidation in adipocytes. Lipids. 2005;40(8):815–21.

    Article  CAS  PubMed  Google Scholar 

  37. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013: 152786.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mason RP, Sherratt SCR, Jacob RF. Eicosapentaenoic acid inhibits oxidation of ApoB-containing lipoprotein particles of different size in vitro when administered alone or in combination with atorvastatin active metabolite compared with other triglyceride-lowering agents. J Cardiovasc Pharmacol. 2016;68(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang CL, Seo T, Matsuzaki M, Worgall TS, Deckelbaum RJ. n-3 fatty acids reduce arterial LDL-cholesterol delivery and arterial lipoprotein lipase levels and lipase distribution. Arterioscler Thromb Vasc Biol. 2009;29(4):555–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fischer S, Weber PC. Thromboxane A3 (TXA3) is formed in human platelets after dietary eicosapentaenoic acid (C20:5 omega 3). Biochem Biophys Res Commun. 1983;116(3):1091–9.

    Article  CAS  PubMed  Google Scholar 

  41. Dona M, Fredman G, Schwab JM, Chiang N, Arita M, Goodarzi A, et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112(3):848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woodman RJ, Mori TA, Burke V, Puddey IB, Barden A, Watts GF, et al. Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis. 2003;166(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  43. Gani OA. Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists? Cardiovasc Diabetol. 2008;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr. 2012;96(5):1137–49.

    Article  CAS  PubMed  Google Scholar 

  45. Zayed EA, AinShoka AA, El Shazly KA, Abd El Latif HA. Improvement of insulin resistance via increase of GLUT4 and PPARgamma in metabolic syndrome-induced rats treated with omega-3 fatty acid or l-carnitine. J Biochem Mol Toxicol. 2018;32(11):e22218.

  46. Neschen S, Morino K, Dong J, Wang-Fischer Y, Cline GW, Romanelli AJ, et al. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes. 2007;56(4):1034–41.

    Article  CAS  PubMed  Google Scholar 

  47. Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 fatty acids and insulin resistance: focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients. 2018;10(3).

  48. Mori Y, Murakawa Y, Yokoyama J, Tajima N, Ikeda Y, Nobukata H, et al. Effect of highly purified eicosapentaenoic acid ethyl ester on insulin resistance and hypertension in Dahl salt-sensitive rats. Metabolism. 1999;48(9):1089–95.

    Article  CAS  PubMed  Google Scholar 

  49. Mori Y, Murakawa Y, Katoh S, Hata S, Yokoyama J, Tajima N, et al. Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus. Metabolism. 1997;46(12):1458–64.

    Article  CAS  PubMed  Google Scholar 

  50. Kim N, Kang MS, Nam M, Kim SA, Hwang GS, Kim HS. Eicosapentaenoic acid (EPA) modulates glucose metabolism by targeting AMP-activated protein kinase (AMPK) pathway. Int J Mol Sci. 2019;20(19).

  51. D’Alessandro ME, Chicco A, Lombardo YB. Fish oil reverses the altered glucose transporter, phosphorylation, insulin receptor substrate-1 protein level and lipid contents in the skeletal muscle of sucrose-rich diet fed rats. Prostaglandins Leukot Essent Fatty Acids. 2013;88(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  52. Martins AR, Crisma AR, Masi LN, Amaral CL, Marzuca-Nassr GN, Bomfim LHM, et al. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem. 2018;55:76–88.

    Article  CAS  PubMed  Google Scholar 

  53. Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, Tanaka M, et al. Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol. 2007;27(9):1918–25.

    Article  CAS  PubMed  Google Scholar 

  54. Šmíd V, Dvořák K, Šedivý P, Kosek V, Leníček M, Dezortová M, et al. Effect of omega-3 polyunsaturated fatty acids on lipid metabolism in patients with metabolic syndrome and NAFLD. Hepatol Commun. 2022;6(6):1336–49.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang JCZ, Fernandez-Galilea M, Martinez-Fernandez L, Gonzalez-Muniesa P, Perez-Chavez A, Martinez JA, et al. Oxidative stress and non-alcoholic fatty liver disease: effects of omega-3 fatty acid supplementation. Nutrients. 2019;11(4).

  56. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626–35.

    Article  CAS  PubMed  Google Scholar 

  57. Sarwar N, Sandhu MS, Ricketts SL, Butterworth AS, Di Angelantonio E, Boekholdt SM, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet. 2010;375(9726):1634–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, et al. Association of triglyceride-lowering LPL variants and LDL-C–lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321(4):364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, Schnohr P, Jensen GB, Nordestgaard BG. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  60. Balling M, Afzal S, Varbo A, Langsted A, Davey Smith G, Nordestgaard BG. VLDL Cholesterol accounts for one-half of the risk of myocardial infarction associated with apoB-containing lipoproteins. J Am Coll Cardiol. 2020;76(23):2725–35.

    Article  CAS  PubMed  Google Scholar 

  61. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321(4):364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease. Circ Res. 2016;118(4):547–63.

    Article  CAS  PubMed  Google Scholar 

  64. Scott R, O’Brien R, Fulcher G, Pardy C, D’Emden M, Tse D, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Secondary Prevention by Raising HDL Cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation. 2000;102(1):21–7.

  66. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

  67. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019;41(1):111–88.

    Article  Google Scholar 

  68. •• Virani SS, Morris PB, Agarwala A, Ballantyne CM, Birtcher KK, Kris-Etherton PM, et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia. J Am Coll Cardiol. 2021;78(9):960–93. ACC consensus statement on reduction of cardiovascular risk in patients with hypertriglyceridemia, recommending use of VASCEPA for the same.

  69. Das Pradhan A, Glynn RJ, Fruchart JC, MacFadyen JG, Zaharris ES, Everett BM, et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387(21):1923–34.

    Article  PubMed  Google Scholar 

  70. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  71. Durrington PN, Bhatnagar D, Mackness MI, Morgan J, Julier K, Khan MA, et al. An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia. Heart. 2001;85(5):544–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. FDA. Drug Approval Package- Omacor- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-654_Omacor.cfm. 2004.

  73. Jacobson TA. Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr. 2008;87(6):1981s-s1990.

    Article  CAS  PubMed  Google Scholar 

  74. Calabresi L, Donati D, Pazzucconi F, Sirtori CR, Franceschini G. Omacor in familial combined hyperlipidemia: effects on lipids and low density lipoprotein subclasses. Atherosclerosis. 2000;148(2):387–96.

    Article  CAS  PubMed  Google Scholar 

  75. Nelson JR, Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad Med. 2019;131(4):268–77.

    Article  CAS  PubMed  Google Scholar 

  76. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71(5):1085–94.

    Article  CAS  PubMed  Google Scholar 

  77. Kastelein JJ, Maki KC, Susekov A, Ezhov M, Nordestgaard BG, Machielse BN, et al. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial. J Clin Lipidol. 2014;8(1):94–106.

    Article  PubMed  Google Scholar 

  78. Bays HE, Ballantyne CM, Kastelein JJ, Isaacsohn JL, Braeckman RA, Soni PN. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial). Am J Cardiol. 2011;108(5):682–90.

    Article  CAS  PubMed  Google Scholar 

  79. Ballantyne CM, Bays HE, Kastelein JJ, Stein E, Isaacsohn JL, Braeckman RA, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol. 2012;110(7):984–92.

    Article  CAS  PubMed  Google Scholar 

  80. Iso H, Kobayashi M, Ishihara J, Sasaki S, Okada K, Kita Y, et al. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  81. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet. 1999;354(9177):447–55.

  82. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8.

    Article  CAS  PubMed  Google Scholar 

  83. Rauch B, Schiele R, Schneider S, Diller F, Victor N, Gohlke H, et al. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010;122(21):2152–9.

    Article  CAS  PubMed  Google Scholar 

  84. Galan P, Kesse-Guyot E, Czernichow S, Briancon S, Blacher J, Hercberg S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. BMJ. 2010;341: c6273.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bosch J, Gerstein HC, Dagenais GR, Diaz R, Dyal L, Jung H, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309–18.

    Article  CAS  PubMed  Google Scholar 

  86. Roncaglioni MC, Tombesi M, Avanzini F, Barlera S, Caimi V, Longoni P, et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368(19):1800–8.

    Article  PubMed  Google Scholar 

  87. Bowman L, Mafham M, Stevens W, Haynes R, Aung T, Chen F, et al. ASCEND: A Study of Cardiovascular Events iN Diabetes: Characteristics of a randomized trial of aspirin and of omega-3 fatty acid supplementation in 15,480 people with diabetes. Am Heart J. 2018;198:135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  88. •• Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. Large scale prospective RCT showing significant cardiovascular end point reduction with icosapent ethyl (EPA), leading to change in guidelines for cardiovascular risk reduction in patients with hypertriglyceridemia.

  89. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  90. •• Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. Jama. 2020;324(22):2268–80. Large prospective RCT demonstrating no benefit of omega-3 fatty acid (EPA+DHA) in cardiovascular risk reduction and thus calling into question the findings of REDUCE-IT trial.

  91. • Kalstad AA, Myhre PL, Laake K, Tveit SH, Schmidt EB, Smith P, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation. 2021;143(6):528–39. Large prospective RCT in high risk patients (recent MI), which showed no benefit of intervention with prescription omega-3 fatty acid treatment in reducing future CV events.

  92. Peterson BE, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, et al. Treatment with icosapent ethyl to reduce ischemic events in patients with prior percutaneous coronary intervention: insights from REDUCE-IT PCI. J Am Heart Assoc. 2022;11(6): e022937.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Selvaraj S, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, et al. Impact of icosapent ethyl on cardiovascular risk reduction in patients with heart failure in REDUCE-IT. J Am Heart Assoc. 2022;11(7): e024999.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Verma S, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, et al. Icosapent ethyl reduces ischemic events in patients with a history of previous coronary artery bypass grafting: REDUCE-IT CABG. Circulation. 2021;144(23):1845–55.

    Article  CAS  PubMed  Google Scholar 

  95. Majithia A, Bhatt DL, Friedman AN, Miller M, Steg PG, Brinton EA, et al. Benefits of icosapent ethyl across the range of kidney function in patients with established cardiovascular disease or diabetes: REDUCE-IT RENAL. Circulation. 2021;144(22):1750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nissen SE, Lincoff AM, Wolski K, Ballantyne CM, Kastelein JJP, Ridker PM, et al. Association between achieved ω-3 fatty acid levels and major adverse cardiovascular outcomes in patients with high cardiovascular risk: a secondary analysis of the STRENGTH Trial. JAMA Cardiology. 2021;6(8):910–7.

    Article  Google Scholar 

  97. Myhre PL, Kalstad AA, Tveit SH, Laake K, Schmidt EB, Smith P, et al. Changes in eicosapentaenoic acid and docosahexaenoic acid and risk of cardiovascular events and atrial fibrillation: A secondary analysis of the OMEMI trial. J Intern Med. 2022;291(5):637–47.

    Article  CAS  PubMed  Google Scholar 

  98. Guasch-Ferre M, Hu FB, Martinez-Gonzalez MA, Fito M, Bullo M, Estruch R, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014;12:78.

    Article  PubMed  PubMed Central  Google Scholar 

  99. • Doi T, Langsted A, Nordestgaard BG. A possible explanation for the contrasting results of REDUCE-IT vs. STRENGTH: cohort study mimicking trial designs. Eur Heart J. 2021;42(47):4807–17.

  100. Lakshmanan S, Shekar C, Kinninger A, Dahal S, Onuegbu A, Cai AN, et al. Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography. Cardiovasc Res. 2020;116(3):479–82.

    Article  CAS  PubMed  Google Scholar 

  101. Ridker PM, Rifai N, MacFadyen J, Glynn RJ, Jiao L, Steg PG, et al. Effects of randomized treatment with icosapent ethyl and a mineral oil comparator on interleukin-1β, interleukin-6, C-reactive protein, oxidized low-density lipoprotein cholesterol, homocysteine, lipoprotein(a), and lipoprotein-associated phospholipase A2: a REDUCE-IT Biomarker Substudy. Circulation. 2022;146(5):372–9.

    Article  CAS  PubMed  Google Scholar 

  102. Sherratt SCR, Mason RP. Eicosapentaenoic acid inhibits oxidation of high density lipoprotein particles in a manner distinct from docosahexaenoic acid. Biochem Biophys Res Commun. 2018;496(2):335–8.

    Article  CAS  PubMed  Google Scholar 

  103. Pisaniello AD, Psaltis PJ, King PM, Liu G, Gibson RA, Tan JTM, et al. Omega-3 fatty acids ameliorate vascular inflammation: a rationale for their atheroprotective effects. Atherosclerosis. 2021;324:27–37.

    Article  CAS  PubMed  Google Scholar 

  104. Ninomiya T, Nagata M, Hata J, Hirakawa Y, Ozawa M, Yoshida D, et al. Association between ratio of serum eicosapentaenoic acid to arachidonic acid and risk of cardiovascular disease: the Hisayama Study. Atherosclerosis. 2013;231(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  105. Domei T, Yokoi H, Kuramitsu S, Soga Y, Arita T, Ando K, et al. Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ J. 2012;76(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  106. Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: A review. J Clin Lipidol. 2012;6(1):5–18.

    Article  PubMed  Google Scholar 

  107. So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, Maddipati KR, et al. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: a randomized, double-blind, crossover study. Atherosclerosis. 2021;316:90–8.

    Article  CAS  PubMed  Google Scholar 

  108. Weldon SM, Mullen AC, Loscher CE, Hurley LA, Roche HM. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem. 2007;18(4):250–8.

    Article  CAS  PubMed  Google Scholar 

  109. Verlengia R, Gorjao R, Kanunfre CC, Bordin S, Martins De Lima T, Martins EF, et al. Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J Nutr Biochem. 2004;15(11):657–65.

  110. Cawood AL, Ding R, Napper FL, Young RH, Williams JA, Ward MJ, et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212(1):252–9.

    Article  CAS  PubMed  Google Scholar 

  111. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol. 2019;73(3):291–301.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Budoff MJ, Bhatt DL, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J. 2020.

  113. Watanabe T, Ando K, Daidoji H, Otaki Y, Sugawara S, Matsui M, et al. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J Cardiol. 2017;70(6):537–44.

    Article  PubMed  Google Scholar 

  114. Niki T, Wakatsuki T, Yamaguchi K, Taketani Y, Oeduka H, Kusunose K, et al. Effects of the addition of eicosapentaenoic acid to strong statin therapy on inflammatory cytokines and coronary plaque components assessed by integrated backscatter intravascular ultrasound. Circ J. 2016;80(2):450–60.

    Article  CAS  PubMed  Google Scholar 

  115. Khan SU, Lone AN, Khan MS, Virani SS, Blumenthal RS, Nasir K, et al. Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EClinicalMedicine. 2021;38: 100997.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wallin A, Di Giuseppe D, Orsini N, Åkesson A, Forouhi NG, Wolk A. Fish consumption and frying of fish in relation to type 2 diabetes incidence: a prospective cohort study of Swedish men. Eur J Nutr. 2017;56(2):843–52.

    Article  CAS  PubMed  Google Scholar 

  117. Xun P, He K. Fish consumption and incidence of diabetes: meta-analysis of data from 438,000 individuals in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes Care. 2012;35(4):930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Virtanen JK, Mursu J, Voutilainen S, Uusitupa M, Tuomainen TP. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor study. Diabetes Care. 2014;37(1):189–96.

    Article  CAS  PubMed  Google Scholar 

  119. Glauber H, Wallace P, Griver K, Brechtel G. Adverse metabolic effect of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. Ann Intern Med. 1988;108(5):663–8.

    Article  CAS  PubMed  Google Scholar 

  120. Ma MY, Li KL, Zheng H, Dou YL, Han LY, Wang L. Omega-3 index and type 2 diabetes: Systematic review and meta-analysis. Prostaglandins Leukot Essent Fatty Acids. 2021;174: 102361.

    Article  CAS  PubMed  Google Scholar 

  121. Qian F, Ardisson Korat AV, Imamura F, Marklund M, Tintle N, Virtanen JK, et al. n-3 Fatty acid biomarkers and incident type 2 diabetes: an individual participant-level pooling project of 20 prospective cohort studies. Diabetes Care. 2021;44(5):1133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gao C, Liu Y, Gan Y, Bao W, Peng X, Xing Q, et al. Effects of fish oil supplementation on glucose control and lipid levels among patients with type 2 diabetes mellitus: a Meta-analysis of randomized controlled trials. Lipids Health Dis. 2020;19(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sirtori CR, Paoletti R, Mancini M, Crepaldi G, Manzato E, Rivellese A, et al. N-3 fatty acids do not lead to an increased diabetic risk in patients with hyperlipidemia and abnormal glucose tolerance. Italian fish oil multicenter study. Am J Clin Nutr. 1997;65(6):1874–81.

  124. Mostad IL, Bjerve KS, Bjorgaas MR, Lydersen S, Grill V. Effects of n-3 fatty acids in subjects with type 2 diabetes: reduction of insulin sensitivity and time-dependent alteration from carbohydrate to fat oxidation. Am J Clin Nutr. 2006;84(3):540–50.

    Article  CAS  PubMed  Google Scholar 

  125. Sarbolouki S, Javanbakht MH, Derakhshanian H, Hosseinzadeh P, Zareei M, Hashemi SB, et al. Eicosapentaenoic acid improves insulin sensitivity and blood sugar in overweight type 2 diabetes mellitus patients: a double-blind randomised clinical trial. Singapore Med J. 2013;54(7):387-90.

  126. Oh PC, Koh KK, Sakuma I, Lim S, Lee Y, Lee S, et al. Omega-3 fatty acid therapy dosedependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int J Cardiol. 2014;176(3):696–702.

    Article  PubMed  Google Scholar 

  127. Clark LF, Thivierge MC, Kidd CA, McGeoch SC, Abraham P, Pearson DW, et al. Fish oil supplemented for 9 months does not improve glycaemic control or insulin sensitivity in subjects with impaired glucose regulation: a parallel randomised controlled trial. Br J Nutr. 2016;115(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  128. Poreba M, Mostowik M, Siniarski A, Golebiowska-Wiatrak R, Malinowski KP, Haberka M, et al. Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wang F, Wang Y, Zhu Y, Liu X, Xia H, Yang X, et al. Treatment for 6 months with fish oil-derived n-3 polyunsaturated fatty acids has neutral effects on glycemic control but improves dyslipidemia in type 2 diabetic patients with abdominal obesity: a randomized, double-blind, placebo-controlled trial. Eur J Nutr. 2017;56(7):2415–22.

    Article  CAS  PubMed  Google Scholar 

  130. Orang Z, Mohsenpour MA, Mozaffari-Khosravi H. Effect of Omega-3 fatty acid supplementation on inflammatory markers and insulin resistance indices in patient with type 2 diabetes and nonalcoholic fatty liver: A randomized double-blind clinical trial. Obes Med. 2020;19:100278.

  131. Abbott KA, Burrows TL, Acharya S, Thota RN, Garg ML. DHA-enriched fish oil reduces insulin resistance in overweight and obese adults. Prostaglandins Leukot Essent Fat Acids. 2020;159:102154.

  132. Superko HR, Superko SM, Nasir K, Agatston A, Garrett BC. Omega-3 fatty acid blood levels. Circulation. 2013;128(19):2154–61.

    Article  PubMed  Google Scholar 

  133. FDA. Drug Approval Package - Omacor. 2004. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-654_Omacor.cfm. 2004. Accessed 20 Oct 2021.

  134. • FDA. Vascepa Prescribing Information and Indications. 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202057s035lbl.pdf. Accessed 4 Jul 2022. FDA approval of use of icosapent ethyl (VASCEPA) for cardiovascular risk reduction in patients with hypertriglyceridemia.

  135. Cardiovascular disease and risk management. standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S144–74.

    Google Scholar 

  136. da Luz PL, Favarato D, Faria-Neto JR Jr, Lemos P, Chagas AC. High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (Sao Paulo, Brazil). 2008;63(4):427–32.

    Article  PubMed  Google Scholar 

  137. Jia X, Gao F, Pickett JK, Al Rifai M, Birnbaum Y, Nambi V, et al. Association between omega-3 fatty acid treatment and atrial fibrillation in cardiovascular outcome trials: a systematic review and meta-analysis. Cardiovasc Drugs Ther. 2021;35(4):793–800.

    Article  CAS  PubMed  Google Scholar 

  138. Gencer B, Djousse L, Al-Ramady OT, Cook NR, Manson JE, Albert CM. Effect of long-term marine ɷ-3 fatty acids supplementation on the risk of atrial fibrillation in randomized controlled trials of cardiovascular outcomes: a systematic review and meta-analysis. Circulation. 2021;144(25):1981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. • Albert CM, Cook NR, Pester J, Moorthy MV, Ridge C, Danik JS, et al. Effect of marine omega-3 fatty acid and vitamin D supplementation on incident atrial fibrillation: a randomized clinical trial. Jama. 2021;325(11):1061–73. Prospective RCT which studied incidence of atrial fibrillation as a primary outcome in patients treated with omega-3 fatty acid and showed no increase in event rates.

  140. Wachira JK, Larson MK, Harris WS. n-3 Fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights. Br J Nutr. 2014;111(9):1652–62.

    Article  CAS  PubMed  Google Scholar 

  141. Wong ND, Zhao Y, Quek RGW, Blumenthal RS, Budoff MJ, Cushman M, et al. Residual atherosclerotic cardiovascular disease risk in statin-treated adults: The Multi-Ethnic Study of Atherosclerosis. J Clin Lipidol. 2017;11(5):1223–33.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Harris WS, Del Gobbo L, Tintle NL. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis. 2017;262:51–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita R. Kalyani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S., Sarkar, S., Zaffar, D. et al. Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence. Curr Cardiol Rep 25, 51–65 (2023). https://doi.org/10.1007/s11886-022-01831-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-022-01831-0

Keywords

Navigation