Skip to main content

Advertisement

Log in

Obesity Genomics and Metabolomics: a Nexus of Cardiometabolic Risk

  • Cardiovascular Genomics (P Natarajan, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obesity is a significant international public health epidemic with major downstream consequences on morbidity and mortality. While lifestyle factors contribute, there is an evolving understanding of genomic and metabolomic pathways involved with obesity and its relationship with cardiometabolic risk. This review will provide an overview of some of these important findings from both a biologic and clinical perspective.

Recent Findings

Recent studies have identified polygenic risk scores and metabolomic biomarkers of obesity and related outcomes, which have also highlighted biological pathways, such as the branched-chain amino acid (BCAA) pathway that is dysregulated in this disease. These biomarkers may help in personalizing obesity interventions and for mitigation of future cardiometabolic risk.

Summary

A multifaceted approach is necessary to impact the growing epidemic of obesity and related diseases. This will likely include incorporating precision medicine approaches with genomic and metabolomic biomarkers to personalize interventions and improve risk prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hales CM, Carrol MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020;360.

  2. WHO. Global status report on noncommunicable diseases 20142014 Contract No.: 978 92 4 156485 4.

  3. Hales CM, Carrol MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief. 2017;288.

  4. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB. Annual deaths attributable to obesity in the United States. JAMA. 1999;282(16):1530–8. https://doi.org/10.1001/jama.282.16.1530.

    Article  CAS  PubMed  Google Scholar 

  5. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289(2):187–93. https://doi.org/10.1001/jama.289.2.187.

    Article  PubMed  Google Scholar 

  6. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 2004;351(26):2694–703. https://doi.org/10.1056/NEJMoa042135.

    Article  CAS  PubMed  Google Scholar 

  7. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097–105. https://doi.org/10.1056/NEJM199910073411501.

    Article  CAS  PubMed  Google Scholar 

  8. Bhaskaran K, Dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes Endocrinol. 2018;6(12):944–53. https://doi.org/10.1016/S2213-8587(18)30288-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60. https://doi.org/10.1016/S0140-6736(12)61766-8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes Rev. 2016;17(1):56–67. https://doi.org/10.1111/obr.12316.

    Article  CAS  PubMed  Google Scholar 

  11. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016.

    Article  PubMed  Google Scholar 

  12. Sarkar S, Lipworth L, Kabagambe EK, Bian A, Stewart TG, Blot WJ, et al. A description of risk factors for non-alcoholic fatty liver disease in the southern community cohort study: a nested case-control study. Front Nutr. 2020;7:71. https://doi.org/10.3389/fnut.2020.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Czernichow S, Kengne AP, Huxley RR, Batty GD, de Galan B, Grobbee D, et al. Comparison of waist-to-hip ratio and other obesity indices as predictors of cardiovascular disease risk in people with type-2 diabetes: a prospective cohort study from ADVANCE. Eur J Cardiovasc Prev Rehabil. 2011;18(2):312–9. https://doi.org/10.1097/HJR.0b013e32833c1aa3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prospective Studies C, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96. https://doi.org/10.1016/S0140-6736(09)60318-4.

    Article  Google Scholar 

  15. Collaborators GBDRF. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94. https://doi.org/10.1016/S0140-6736(18)32225-6.

    Article  Google Scholar 

  16. Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–40. https://doi.org/10.1056/NEJMoa1503840.

    Article  PubMed  Google Scholar 

  17. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  18. Burke GL, Bertoni AG, Shea S, Tracy R, Watson KE, Blumenthal RS, et al. The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: the multi-ethnic study of atherosclerosis. Arch Intern Med. 2008;168(9):928–35. https://doi.org/10.1001/archinte.168.9.928.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reis JP, Loria CM, Lewis CE, Powell-Wiley TM, Wei GS, Carr JJ, et al. Association between duration of overall and abdominal obesity beginning in young adulthood and coronary artery calcification in middle age. JAMA. 2013;310(3):280–8. https://doi.org/10.1001/jama.2013.7833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finer N. Medical consequences of obesity. Medicine. 2015;43(2):88–93. https://doi.org/10.1016/j.mpmed.2014.11.003.

    Article  Google Scholar 

  21. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. https://doi.org/10.1056/NEJMoa020245.

    Article  PubMed  Google Scholar 

  22. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996–1002. https://doi.org/10.1001/archinte.161.7.996.

    Article  CAS  PubMed  Google Scholar 

  23. Aune D, Sen A, Schlesinger S, Norat T, Janszky I, Romundstad P, et al. Body mass index, abdominal fatness, fat mass and the risk of atrial fibrillation: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(3):181–92. https://doi.org/10.1007/s10654-017-0232-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mi Y, Yan S, Lu Y, Liang Y, Li C. Venous thromboembolism has the same risk factors as atherosclerosis: a PRISMA-compliant systemic review and meta-analysis. Medicine (Baltimore). 2016;95(32):e4495. https://doi.org/10.1097/MD.0000000000004495.

    Article  CAS  Google Scholar 

  25. Wattanakit K, Lutsey PL, Bell EJ, Gornik H, Cushman M, Heckbert SR, et al. Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analysis. Thromb Haemost. 2012;108(3):508–15. https://doi.org/10.1160/TH11-10-0726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lotta LA, Wittemans LBL, Zuber V, Stewart ID, Sharp SJ, Luan J, et al. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA. 2018;320(24):2553–63. https://doi.org/10.1001/jama.2018.19329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larsson SC, Back M, Rees JMB, Mason AM, Burgess S. Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian randomization study. Eur Heart J. 2020;41(2):221–6. https://doi.org/10.1093/eurheartj/ehz388.

    Article  CAS  PubMed  Google Scholar 

  28. Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey SG. Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study. BMJ. 2020;369:m1203. https://doi.org/10.1136/bmj.m1203.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Censin JC, Peters SAE, Bovijn J, Ferreira T, Pulit SL, Magi R, et al. Causal relationships between obesity and the leading causes of death in women and men. PLoS Genet. 2019;15(10):e1008405. https://doi.org/10.1371/journal.pgen.1008405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McLaughlin T, Abbasi F, Lamendola C, Reaven G. Heterogeneity in the prevalence of risk factors for cardiovascular disease and type 2 diabetes mellitus in obese individuals: effect of differences in insulin sensitivity. Arch Intern Med. 2007;167(7):642–8. https://doi.org/10.1001/archinte.167.7.642.

    Article  CAS  PubMed  Google Scholar 

  31. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24. https://doi.org/10.1001/archinte.168.15.1617.

    Article  PubMed  Google Scholar 

  32. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82. https://doi.org/10.1001/jama.2012.113905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317(6):626–34. https://doi.org/10.1001/jama.2016.21042.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev. 2017;18(6):603–34. https://doi.org/10.1111/obr.12531.

    Article  CAS  PubMed  Google Scholar 

  35. Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, et al. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet. 2016;25(11):2283–94. https://doi.org/10.1093/hmg/ddw096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Novas R, Cardenas-Rodriguez M, Irigoin F, Badano JL. Bardet-Biedl syndrome: is it only cilia dysfunction? FEBS Lett. 2015;589(22):3479–91. https://doi.org/10.1016/j.febslet.2015.07.031.

    Article  CAS  PubMed  Google Scholar 

  37. Schaefer E, Stoetzel C, Scheidecker S, Geoffroy V, Prasad MK, Redin C, et al. Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet-Biedl syndrome. J Hum Genet. 2016;61(5):447–50. https://doi.org/10.1038/jhg.2015.162.

    Article  CAS  PubMed  Google Scholar 

  38. Cheon CK. Genetics of Prader-Willi syndrome and Prader-Will-like syndrome. Ann Pediatr Endocrinol Metab. 2016;21(3):126–35. https://doi.org/10.6065/apem.2016.21.3.126.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choquet H, Meyre D. Genomic insights into early-onset obesity. Genome Med. 2010;2(6):36. https://doi.org/10.1186/gm157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barsh GS, Farooqi IS, O'Rahilly S. Genetics of body-weight regulation. Nature. 2000;404(6778):644–51. https://doi.org/10.1038/35007519.

    Article  CAS  PubMed  Google Scholar 

  41. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95. https://doi.org/10.1056/NEJMoa022050.

    Article  CAS  PubMed  Google Scholar 

  42. Farooqi IS, O'Rahilly S. Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab. 2008;4(10):569–77. https://doi.org/10.1038/ncpendmet0966.

    Article  CAS  PubMed  Google Scholar 

  43. Wardle J, Carnell S, Haworth CM, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87(2):398–404. https://doi.org/10.1093/ajcn/87.2.398.

    Article  CAS  PubMed  Google Scholar 

  44. Silventoinen K, Magnusson PK, Tynelius P, Kaprio J, Rasmussen F. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol. 2008;32(4):341–9. https://doi.org/10.1002/gepi.20308.

    Article  PubMed  Google Scholar 

  45. Hager J, Dina C, Francke S, Dubois S, Houari M, Vatin V, et al. A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet. 1998;20(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  46. Price RA, Li WD, Bernstein A, Crystal A, Golding EM, Weisberg SJ, et al. A locus affecting obesity in human chromosome region 10p12. Diabetologia. 2001;44(3):363–6. https://doi.org/10.1007/s001250051627.

    Article  CAS  PubMed  Google Scholar 

  47. Saar K, Geller F, Ruschendorf F, Reis A, Friedel S, Schauble N, et al. Genome scan for childhood and adolescent obesity in German families. Pediatrics. 2003;111(2):321–7. https://doi.org/10.1542/peds.111.2.321.

    Article  PubMed  Google Scholar 

  48. Boutin P, Dina C, Vasseur F, Dubois S, Corset L, Seron K, et al. GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol. 2003;1(3):361–71. ARTN e68. https://doi.org/10.1371/journal.pbio.0000068.

    Article  Google Scholar 

  49. Swarbrick MM, Waldenmaier B, Pennacchio LA, Lind DL, Cavazos MM, Geller F, et al. Lack of support for the association between GAD2 polymorphisms and severe human obesity. PLoS Biol. 2005;3(9):e315. https://doi.org/10.1371/journal.pbio.0030315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Groves CJ, Zeggini E, Walker M, Hitman GA, Levy JC, O'Rahilly S, et al. Significant linkage of BMI to chromosome 10p in the U.K. population and evaluation of GAD2 as a positional candidate. Diabetes. 2006;55(6):1884–9. https://doi.org/10.2337/db05-1674.

    Article  CAS  PubMed  Google Scholar 

  51. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–6. https://doi.org/10.1038/ng2048.

    Article  CAS  PubMed  Google Scholar 

  52. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94. https://doi.org/10.1126/science.1141634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115. https://doi.org/10.1371/journal.pgen.0030115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75. https://doi.org/10.1038/ng.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. 2009;41(2):157–9. https://doi.org/10.1038/ng.301.

    Article  CAS  PubMed  Google Scholar 

  56. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. •• Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019;177(3):587–96.e9. https://doi.org/10.1016/j.cell.2019.03.028. This study used 2.1 million common genetic variants associated with obesity to quantify a PRS that associated with obesity risk across the life span, with a similar effect size to rare, monogenic obesity variants and is a strong risk factor for adverse obesity-associated outcomes including coronary disease, heart failure, and mortality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muller MJ, Geisler C, Blundell J, Dulloo A, Schutz Y, Krawczak M, et al. The case of GWAS of obesity: does body weight control play by the rules? Int J Obes. 2018;42(8):1395–405. https://doi.org/10.1038/s41366-018-0081-6.

    Article  Google Scholar 

  59. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–U53. https://doi.org/10.1038/ng.686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49(10):1458–67. https://doi.org/10.1038/ng.3951.

    Article  CAS  PubMed  Google Scholar 

  61. Gill R, Cheung YH, Shen Y, Lanzano P, Mirza NM, Ten S, et al. Whole-exome sequencing identifies novel LEPR mutations in individuals with severe early onset obesity. Obesity (Silver Spring). 2014;22(2):576–84. https://doi.org/10.1002/oby.20492.

    Article  CAS  Google Scholar 

  62. Bhatt A, Purani C, Bhargava P, Patel K, Agarbattiwala T, Puvar A, et al. Whole exome sequencing reveals novel LEPR frameshift mutation in severely obese children from Western India. Mol Genet Genomic Med. 2019;7(7):e00692. https://doi.org/10.1002/mgg3.692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paz-Filho G, Boguszewski MC, Mastronardi CA, Patel HR, Johar AS, Chuah A, et al. Whole exome sequencing of extreme morbid obesity patients: translational implications for obesity and related disorders. Genes (Basel). 2014;5(3):709–25. https://doi.org/10.3390/genes5030709.

    Article  CAS  Google Scholar 

  64. Jiao H, Kulyte A, Naslund E, Thorell A, Gerdhem P, Kere J, et al. Whole-exome sequencing suggests LAMB3 as a susceptibility gene for morbid obesity. Diabetes. 2016;65(10):2980–9. https://doi.org/10.2337/db16-0522.

    Article  CAS  PubMed  Google Scholar 

  65. • Marenne G, Hendricks AE, Perdikari A, Bounds R, Payne F, Keogh JM, et al. Exome sequencing identifies genes and gene sets contributing to severe childhood obesity, linking PHIP variants to repressed POMC transcription. Cell Metab. 2020;31(6):1107–19.e12. https://doi.org/10.1016/j.cmet.2020.05.007. This study identified novel genes associated with severe childhood obesity using WES, including PHIP which the investigators found regulates POMC expression in the leptin-melanocortin pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tachmazidou I, Suveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. Am J Hum Genet. 2017;100(6):865–84. https://doi.org/10.1016/j.ajhg.2017.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458(7240):894–8. https://doi.org/10.1038/nature07848.

    Article  CAS  PubMed  Google Scholar 

  68. Lee YS. Genetics of nonsyndromic obesity. Curr Opin Pediatr. 2013;25(6):666–73. https://doi.org/10.1097/MOP.0b013e3283658fba.

    Article  CAS  PubMed  Google Scholar 

  69. Deng X, Su R, Stanford S, Chen J. Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol (Lausanne). 2018;9:396. https://doi.org/10.3389/fendo.2018.00396.

    Article  Google Scholar 

  70. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907. https://doi.org/10.1056/NEJMoa1502214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stratigopoulos G, Martin Carli JF, O'Day DR, Wang L, Leduc CA, Lanzano P, et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 2014;19(5):767–79. https://doi.org/10.1016/j.cmet.2014.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet. 2010;18(9):1054–6. https://doi.org/10.1038/ejhg.2010.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karra E, O'Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest. 2013;123(8):3539–51. https://doi.org/10.1172/JCI44403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Villalobos-Comparan M, Teresa Flores-Dorantes M, Teresa Villarreal-Molina M, Rodriguez-Cruz M, Garcia-Ulloa AC, Robles L, et al. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity (Silver Spring). 2008;16(10):2296–301. https://doi.org/10.1038/oby.2008.367.

    Article  CAS  Google Scholar 

  75. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. https://doi.org/10.1001/jama.292.14.1724.

    Article  CAS  PubMed  Google Scholar 

  76. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85. https://doi.org/10.1210/jc.2007-2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Amigo L, Mendoza H, Castro J, Quinones V, Miquel JF, Zanlungo S. Relevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice. Hepatology. 2002;36(4 Pt 1):819–28. https://doi.org/10.1053/jhep.2002.35617.

    Article  CAS  PubMed  Google Scholar 

  78. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93. https://doi.org/10.1056/NEJMoa035622.

    Article  PubMed  Google Scholar 

  79. Adams ST, Salhab M, Hussain ZI, Miller GV, Leveson SH. Obesity-related hypertension and its remission following gastric bypass surgery - a review of the mechanisms and predictive factors. Blood Press. 2013;22(3):131–7. https://doi.org/10.3109/08037051.2012.749570.

    Article  PubMed  Google Scholar 

  80. Laferrere B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B, et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 2011;3(80):80re2. https://doi.org/10.1126/scitranslmed.3002043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Magkos F, Bradley D, Schweitzer GG, Finck BN, Eagon JC, Ilkayeva O, et al. Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes. 2013;62(8):2757–61. https://doi.org/10.2337/db13-0185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pulkkinen L, Uitto J. Mutation analysis and molecular genetics of epidermolysis bullosa. Matrix Biol. 1999;18(1):29–42. https://doi.org/10.1016/s0945-053x(98)00005-5.

  83. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101(16):6062–7. https://doi.org/10.1073/pnas.0400782101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5. https://doi.org/10.1038/nature13138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9(2):125–38. https://doi.org/10.1038/nrm2336.

    Article  CAS  PubMed  Google Scholar 

  86. Vance JE. Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett. 2006;580(23):5518–24. https://doi.org/10.1016/j.febslet.2006.06.008.

    Article  CAS  PubMed  Google Scholar 

  87. Serria MS, Ikeda H, Omoteyama K, Hirokawa J, Nishi S, Sakai M. Regulation and differential expression of the c-maf gene in differentiating cultured cells. Biochem Biophys Res Commun. 2003;310(2):318–26. https://doi.org/10.1016/j.bbrc.2003.08.144.

    Article  CAS  PubMed  Google Scholar 

  88. Tsuchiya M, Taniguchi S, Yasuda K, Nitta K, Maeda A, Shigemoto M, et al. Potential roles of large mafs in cell lineages and developing pancreas. Pancreas. 2006;32(4):408–16. https://doi.org/10.1097/01.mpa.0000220867.64787.99.

    Article  PubMed  Google Scholar 

  89. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997;15(3):269–72. https://doi.org/10.1038/ng0397-269.

    Article  CAS  PubMed  Google Scholar 

  90. Fernandez-Rhodes L, Gong J, Haessler J, Franceschini N, Graff M, Nishimura KK, et al. Trans-ethnic fine-mapping of genetic loci for body mass index in the diverse ancestral populations of the Population Architecture using Genomics and Epidemiology (PAGE) Study reveals evidence for multiple signals at established loci. Hum Genet. 2017;136(6):771–800. https://doi.org/10.1007/s00439-017-1787-6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Golan D, Lander ES, Rosset S. Measuring missing heritability: inferring the contribution of common variants. Proc Natl Acad Sci U S A. 2014;111(49):E5272–81. https://doi.org/10.1073/pnas.1419064111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24. https://doi.org/10.1016/j.ajhg.2011.11.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet. 2011;43(6):519–25. https://doi.org/10.1038/ng.823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015;47(10):1114–20. https://doi.org/10.1038/ng.3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu Z, Bakshi A, Vinkhuyzen AA, Hemani G, Lee SH, Nolte IM, et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am J Hum Genet. 2015;96(3):377–85. https://doi.org/10.1016/j.ajhg.2015.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovas JM, et al. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2016;9(3):291–313. https://doi.org/10.1161/HCG.0000000000000030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pirastu N, Kooyman M, Traglia M, Robino A, Willems SM, Pistis G, et al. A genome-wide association study in isolated populations reveals new genes associated to common food likings. Rev Endocr Metab Disord. 2016;17(2):209–19. https://doi.org/10.1007/s11154-016-9354-3.

    Article  CAS  PubMed  Google Scholar 

  98. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–94. https://doi.org/10.1016/j.cell.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  99. Ding M, Ellervik C, Huang T, Jensen MK, Curhan GC, Pasquale LR, et al. Diet quality and genetic association with body mass index: results from 3 observational studies. Am J Clin Nutr. 2018;108(6):1291–300. https://doi.org/10.1093/ajcn/nqy203.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JPA, et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA. 2018;319(7):667–79. https://doi.org/10.1001/jama.2018.0245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yanovski SZ, Yanovski JA. Toward precision approaches for the prevention and treatment of obesity. JAMA. 2018;319(3):223–4. https://doi.org/10.1001/jama.2017.20051.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116. https://doi.org/10.1371/journal.pmed.1001116.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367(15):1387–96. https://doi.org/10.1056/NEJMoa1203039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qi Q, Li Y, Chomistek AK, Kang JH, Curhan GC, Pasquale LR, et al. Television watching, leisure time physical activity, and the genetic predisposition in relation to body mass index in women and men. Circulation. 2012;126(15):1821–7. https://doi.org/10.1161/CIRCULATIONAHA.112.098061.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610. https://doi.org/10.1136/bmj.g1610.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, et al. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol. 2017;46(2):559–75. https://doi.org/10.1093/ije/dyw337.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rohde K, Keller M, la Cour PL, Bluher M, Kovacs P, Bottcher Y. Genetics and epigenetics in obesity. Metabolism. 2019;92:37–50. https://doi.org/10.1016/j.metabol.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  108. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. https://doi.org/10.1016/j.cmet.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://doi.org/10.1016/j.celrep.2016.05.092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab. 2016;5(7):538–51. https://doi.org/10.1016/j.molmet.2016.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. • Vogelzangs N, van der Kallen CJH, van Greevenbroek MMJ, van der Kolk BW, Jocken JWE, Goossens GH, et al. Metabolic profiling of tissue-specific insulin resistance in human obesity: results from the Diogenes study and the Maastricht Study. Int J Obes. 2020;44(6):1376–86. https://doi.org/10.1038/s41366-020-0565-z. This study provides recent insight into the metabolic pathways contributing to tissue-specific hepatic and muscle insulin resistance in obesity.

    Article  CAS  Google Scholar 

  112. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293(6):E1552–63. https://doi.org/10.1152/ajpendo.00134.2007.

    Article  CAS  PubMed  Google Scholar 

  113. Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 2016;13(11):e1002179. https://doi.org/10.1371/journal.pmed.1002179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. https://doi.org/10.1126/science.1241214.

    Article  CAS  PubMed  Google Scholar 

  115. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. https://doi.org/10.1038/nature18646.

    Article  CAS  PubMed  Google Scholar 

  116. Shah SH, Svetkey LP, Newgard CB. Branching out for detection of type 2 diabetes. Cell Metab. 2011;13(5):491–2. https://doi.org/10.1016/j.cmet.2011.04.003.

    Article  CAS  PubMed  Google Scholar 

  117. White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 2019;363(6427):582–3. https://doi.org/10.1126/science.aav0558.

    Article  CAS  PubMed  Google Scholar 

  118. White PJ, McGarrah RW, Grimsrud PA, Tso SC, Yang WH, Haldeman JM, et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 2018;27(6):1281–93.e7. https://doi.org/10.1016/j.cmet.2018.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McGarrah RW, Zhang GF, Christopher BA, Deleye Y, Walejko JM, Page S, et al. Dietary branched-chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats. Am J Physiol Endocrinol Metab. 2020;318(2):E216–E23. https://doi.org/10.1152/ajpendo.00334.2019.

    Article  CAS  PubMed  Google Scholar 

  120. Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):1678–83. https://doi.org/10.2337/dc08-2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. https://doi.org/10.1038/nm.2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Palmer ND, Stevens RD, Antinozzi PA, Anderson A, Bergman RN, Wagenknecht LE, et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab. 2015;100(3):E463–8. https://doi.org/10.1210/jc.2014-2357.

    Article  CAS  PubMed  Google Scholar 

  123. Batch BC, Shah SH, Newgard CB, Turer CB, Haynes C, Bain JR, et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism. 2013;62(7):961–9. https://doi.org/10.1016/j.metabol.2013.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bellissimo MP, Cai Q, Ziegler TR, Liu KH, Tran PH, Vos MB, et al. Plasma high-resolution metabolomics differentiates adults with normal weight obesity from lean individuals. Obesity (Silver Spring). 2019;27(11):1729–37. https://doi.org/10.1002/oby.22654.

    Article  CAS  Google Scholar 

  125. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3(2):207–14. https://doi.org/10.1161/CIRCGENETICS.109.852814.

    Article  CAS  PubMed  Google Scholar 

  126. Bhattacharya S, Granger CB, Craig D, Haynes C, Bain J, Stevens RD, et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. 2014;232(1):191–6. https://doi.org/10.1016/j.atherosclerosis.2013.10.036.

    Article  CAS  PubMed  Google Scholar 

  127. Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, et al. Plasma lipid profiling in a large population-based cohort. J Lipid Res. 2013;54(10):2898–908. https://doi.org/10.1194/jlr.P035808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes. 2015;39(8):1241–8. https://doi.org/10.1038/ijo.2015.65.

    Article  CAS  Google Scholar 

  129. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3(5):321–31. https://doi.org/10.1016/j.cmet.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  130. Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013;62(1):1–8. https://doi.org/10.2337/db12-0466.

    Article  CAS  PubMed  Google Scholar 

  131. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606–14. https://doi.org/10.1016/j.cmet.2012.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baker PR 2nd, Boyle KE, Koves TR, Ilkayeva OR, Muoio DM, Houmard JA, et al. Metabolomic analysis reveals altered skeletal muscle amino acid and fatty acid handling in obese humans. Obesity (Silver Spring). 2015;23(5):981–8. https://doi.org/10.1002/oby.21046.

    Article  CAS  Google Scholar 

  133. Rutkowsky JM, Knotts TA, Ono-Moore KD, McCoin CS, Huang S, Schneider D, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306(12):E1378–87. https://doi.org/10.1152/ajpendo.00656.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cussotto S, Delgado I, Anesi A, Dexpert S, Aubert A, Beau C et al. Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated With Systemic Inflammation. Front Immunol. 2020;11:557. https://doi.org/10.3389/fimmu.2020.00557.

  135. •• Cirulli ET, Guo L, Leon Swisher C, Shah N, Huang L, Napier LA, et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 2019;29(2):488–500.e2. https://doi.org/10.1016/j.cmet.2018.09.022. This study reports novel metabolites associated with BMI and a composite metabolic score of significant metabolites was associated with higher cardiovascular disease outcomes. Interestingly, the metabolic score was not associated with a PRS for obesity, provide insight into potentially distinct obesity risk pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jacob S, Nodzenski M, Reisetter AC, Bain JR, Muehlbauer MJ, Stevens RD, et al. Targeted metabolomics demonstrates distinct and overlapping maternal metabolites associated with BMI, glucose, and insulin sensitivity during pregnancy across four ancestry groups. Diabetes Care. 2017;40(7):911–9. https://doi.org/10.2337/dc16-2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kadakia R, Nodzenski M, Talbot O, Kuang A, Bain JR, Muehlbauer MJ, et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia. 2019;62(3):473–84. https://doi.org/10.1007/s00125-018-4781-1.

    Article  CAS  PubMed  Google Scholar 

  138. Sandler V, Reisetter AC, Bain JR, Muehlbauer MJ, Nodzenski M, Stevens RD, et al. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia. 2017;60(3):518–30. https://doi.org/10.1007/s00125-016-4182-2.

    Article  CAS  PubMed  Google Scholar 

  139. Lowe WL Jr, Bain JR, Nodzenski M, Reisetter AC, Muehlbauer MJ, Stevens RD, et al. Maternal BMI and glycemia impact the fetal metabolome. Diabetes Care. 2017;40(7):902–10. https://doi.org/10.2337/dc16-2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu Y, Kuang A, Talbot O, Bain JR, Muehlbauer MJ, Hayes MG, et al. Metabolomic and genetic associations with insulin resistance in pregnancy. Diabetologia. 2020. https://doi.org/10.1007/s00125-020-05198-1.

  141. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42(2):137–41. https://doi.org/10.1038/ng.507.

    Article  CAS  PubMed  Google Scholar 

  142. Chen HH, Lee WJ, Wang W, Huang MT, Lee YC, Pan WH. Ala55Val polymorphism on UCP2 gene predicts greater weight loss in morbidly obese patients undergoing gastric banding. Obes Surg. 2007;17(7):926–33. https://doi.org/10.1007/s11695-007-9171-6.

    Article  PubMed  Google Scholar 

  143. Hatoum IJ, Greenawalt DM, Cotsapas C, Daly MJ, Reitman ML, Kaplan LM. Weight loss after gastric bypass is associated with a variant at 15q26.1. Am J Hum Genet. 2013;92(5):827–34. https://doi.org/10.1016/j.ajhg.2013.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC, et al. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab. 2016;101(3):871–9. https://doi.org/10.1210/jc.2015-3525.

    Article  CAS  PubMed  Google Scholar 

  145. Bagheri M, Farzadfar F, Qi L, Yekaninejad MS, Chamari M, Zeleznik OA, et al. Obesity-related metabolomic profiles and discrimination of metabolically unhealthy obesity. J Proteome Res. 2018;17(4):1452–62. https://doi.org/10.1021/acs.jproteome.7b00802.

    Article  CAS  PubMed  Google Scholar 

  146. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA, et al. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One. 2012;7(7):e41456. https://doi.org/10.1371/journal.pone.0041456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yea K, Kim J, Yoon JH, Kwon T, Kim JH, Lee BD, et al. Lysophosphatidylcholine activates adipocyte glucose uptake and lowers blood glucose levels in murine models of diabetes. J Biol Chem. 2009;284(49):33833–40. https://doi.org/10.1074/jbc.M109.024869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou B, Ichikawa R, Parnell LD, Noel SE, Zhang X, Bhupathiraju SN, et al. Metabolomic links between sugar-sweetened beverage intake and obesity. J Obes. 2020;2020:7154738. https://doi.org/10.1155/2020/7154738.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sekas G, Patton GM, Lincoln EC, Robins SJ. Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. J Lab Clin Med. 1985;105(2):190–4.

    CAS  PubMed  Google Scholar 

  150. Angell R, Mitsuhashi Y, Bigley K, Bauer JE. Plasma LCAT activity and lipid subfraction composition in obese beagles undergoing weight loss. Lipids. 2009;44(5):415–24. https://doi.org/10.1007/s11745-009-3290-x.

    Article  CAS  PubMed  Google Scholar 

  151. Martinez-Una M, Varela-Rey M, Cano A, Fernandez-Ares L, Beraza N, Aurrekoetxea I, et al. Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology. 2013;58(4):1296–305. https://doi.org/10.1002/hep.26399.

    Article  CAS  PubMed  Google Scholar 

  152. Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, Wang S, et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005;19(10):1266–71. https://doi.org/10.1096/fj.04-3580com.

    Article  CAS  PubMed  Google Scholar 

  153. Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring). 2010;18(9):1695–700. https://doi.org/10.1038/oby.2009.510.

    Article  CAS  Google Scholar 

  154. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7(1):45–56. https://doi.org/10.1016/j.cmet.2007.10.013.

    Article  CAS  PubMed  Google Scholar 

  155. Sampey BP, Freemerman AJ, Zhang J, Kuan PF, Galanko JA, O'Connell TM, et al. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS One. 2012;7(6):e38812. https://doi.org/10.1371/journal.pone.0038812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kraus WE, Pieper CF, Huffman KM, Thompson DK, Kraus VB, Morey MC, et al. Association of plasma small-molecule intermediate metabolites with age and body mass index across six diverse study populations. J Gerontol A Biol Sci Med Sci. 2016;71(11):1507–13. https://doi.org/10.1093/gerona/glw031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Palmnas MSA, Kopciuk KA, Shaykhutdinov RA, Robson PJ, Mignault D, Rabasa-Lhoret R, et al. Serum metabolomics of activity energy expenditure and its relation to metabolic syndrome and obesity. Sci Rep. 2018;8(1):3308. https://doi.org/10.1038/s41598-018-21585-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Poorolajal J, Jenabi E. The association between body mass index and preeclampsia: a meta-analysis. J Matern Fetal Neonatal Med. 2016;29(22):3670–6. https://doi.org/10.3109/14767058.2016.1140738.

    Article  PubMed  Google Scholar 

  159. Shin D, Song WO. Prepregnancy body mass index is an independent risk factor for gestational hypertension, gestational diabetes, preterm labor, and small- and large-for-gestational-age infants. J Matern Fetal Neonatal Med. 2015;28(14):1679–86. https://doi.org/10.3109/14767058.2014.964675.

    Article  PubMed  Google Scholar 

  160. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30(8):2070–6. https://doi.org/10.2337/dc06-2559a.

    Article  PubMed  Google Scholar 

  161. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, et al. Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660–70. https://doi.org/10.1159/000343204.

    Article  CAS  PubMed  Google Scholar 

  162. Hirschel J, Vogel M, Baber R, Garten A, Beuchel C, Dietz Y, et al. Relation of whole blood amino acid and acylcarnitine metabolome to age, sex, BMI, puberty, and metabolic markers in children and adolescents. Metabolites. 2020;10(4). https://doi.org/10.3390/metabo10040149.

  163. Perng W, Rifas-Shiman SL, Sordillo J, Hivert MF, Oken E. Metabolomic profiles of overweight/obesity phenotypes during adolescence: a cross-sectional study in project viva. Obesity (Silver Spring). 2020;28(2):379–87. https://doi.org/10.1002/oby.22694.

    Article  CAS  Google Scholar 

  164. Zhao X, Gang X, Liu Y, Sun C, Han Q, Wang G. Using metabolomic profiles as biomarkers for insulin resistance in childhood obesity: a systematic review. J Diabetes Res. 2016;2016:8160545. https://doi.org/10.1155/2016/8160545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lawler K, Huang-Doran I, Sonoyama T, Collet TH, Keogh JM, Henning E, et al. Leptin-mediated changes in the human metabolome. J Clin Endocrinol Metab. 2020;105(8). https://doi.org/10.1210/clinem/dgaa251.

  166. Adamski J. Genome-wide association studies with metabolomics. Genome Med. 2012;4(4):34. https://doi.org/10.1186/gm333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dharuri H, Demirkan A, van Klinken JB, Mook-Kanamori DO, van Duijn CM, t Hoen PA, et al. Genetics of the human metabolome, what is next? Biochim Biophys Acta. 2014;1842(10):1923–31. https://doi.org/10.1016/j.bbadis.2014.05.030.

    Article  CAS  PubMed  Google Scholar 

  168. Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006;2(8):e130. https://doi.org/10.1371/journal.pgen.0020130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. English SB, Butte AJ. Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes. Bioinformatics. 2007;23(21):2910–7. https://doi.org/10.1093/bioinformatics/btm483.

    Article  CAS  PubMed  Google Scholar 

  170. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, et al. Variations in DNA elucidate molecular networks that cause disease. Nature. 2008;452(7186):429–35. https://doi.org/10.1038/nature06757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–30. https://doi.org/10.1007/s00125-011-2356-5.

    Article  CAS  PubMed  Google Scholar 

  172. Stubbs J, Whybrow S, Teixeira P, Blundell J, Lawton C, Westenhoefer J, et al. Problems in identifying predictors and correlates of weight loss and maintenance: implications for weight control therapies based on behaviour change. Obes Rev. 2011;12(9):688–708. https://doi.org/10.1111/j.1467-789X.2011.00883.x.

    Article  CAS  PubMed  Google Scholar 

  173. Unick JL, Neiberg RH, Hogan PE, Cheskin LJ, Dutton GR, Jeffery R, et al. Weight change in the first 2 months of a lifestyle intervention predicts weight changes 8 years later. Obesity (Silver Spring). 2015;23(7):1353–6. https://doi.org/10.1002/oby.21112.

    Article  Google Scholar 

  174. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50. https://doi.org/10.1056/NEJM200105033441801.

    Article  CAS  PubMed  Google Scholar 

  175. Lamiquiz-Moneo I, Mateo-Gallego R, Bea AM, Dehesa-Garcia B, Perez-Calahorra S, Marco-Benedi V, et al. Genetic predictors of weight loss in overweight and obese subjects. Sci Rep. 2019;9(1):10770. https://doi.org/10.1038/s41598-019-47283-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hollensted M, Fogh M, Schnurr TM, Kloppenborg JT, Have CT, Ruest Haarmark Nielsen T, et al. Genetic susceptibility for childhood BMI has no impact on weight loss following lifestyle intervention in Danish children. Obesity (Silver Spring). 2018;26(12):1915–22. https://doi.org/10.1002/oby.22308.

    Article  Google Scholar 

  177. Schooneman MG, Napolitano A, Houten SM, Ambler GK, Murgatroyd PR, Miller SR, et al. Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Arch Biochem Biophys. 2016;606:73–80. https://doi.org/10.1016/j.abb.2016.07.013.

    Article  CAS  PubMed  Google Scholar 

  178. Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, et al. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310(22):2416–25. https://doi.org/10.1001/jama.2013.280928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sugerman HJ, Sugerman EL, DeMaria EJ, Kellum JM, Kennedy C, Mowery Y, et al. Bariatric surgery for severely obese adolescents. J Gastrointest Surg. 2003;7(1):102–8. https://doi.org/10.1016/S1091-255X(02)00125-7.

    Article  PubMed  Google Scholar 

  180. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. https://doi.org/10.1056/NEJMoa1200225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wittgrove AC, Clark GW. Laparoscopic gastric bypass, Roux-en-Y- 500 patients: technique and results, with 3-60 month follow-up. Obes Surg. 2000;10(3):233–9. https://doi.org/10.1381/096089200321643511.

    Article  CAS  PubMed  Google Scholar 

  182. Higa K, Ho T, Tercero F, Yunus T, Boone KB. Laparoscopic Roux-en-Y gastric bypass: 10-year follow-up. Surg Obes Relat Dis. 2011;7(4):516–25. https://doi.org/10.1016/j.soard.2010.10.019.

    Article  PubMed  Google Scholar 

  183. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–31. https://doi.org/10.1001/2012.jama.11164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014;63(25 Pt B):2985–3023. https://doi.org/10.1016/j.jacc.2013.11.004.

    Article  PubMed  Google Scholar 

  185. Nicoletti CF, de Oliveira AP, Brochado MJ, Pinhel MA, de Oliveira BA, Marchini JS, et al. The Ala55Val and -866G>A polymorphisms of the UCP2 gene could be biomarkers for weight loss in patients who had Roux-en-Y gastric bypass. Nutrition. 2017;33:326–30. https://doi.org/10.1016/j.nut.2016.07.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

J. Regan is supported by a grant from the National Heart, Lung and Blood Institute (1R38HL143612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svati H. Shah.

Ethics declarations

Conflict of Interest

J. Regan declares no conflict of interest. S. Shah holds an unlicensed patent (10317414) on a related research finding, and receives research support through sponsored research agreements through Verily Life Sciences Inc. and Lilly Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regan, J.A., Shah, S.H. Obesity Genomics and Metabolomics: a Nexus of Cardiometabolic Risk. Curr Cardiol Rep 22, 174 (2020). https://doi.org/10.1007/s11886-020-01422-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01422-x

Keywords

Navigation