Skip to main content

Advertisement

Log in

Diagnosis and Management of Familial Dyslipoproteinemias

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

TG:

Triglycerides

CE:

Cholesteryl esters

PL:

Phospholipids

FC:

Free (unesterified) cholesterol

VLDL:

Very low density lipoproteins

LDL:

Low density lipoproteins

HDL:

High density lipoproteins

IDL:

Intermediate density lipoproteins

CM:

Chylomicrons

IBAT:

Intestinal bile acid transporter

FFA:

Free fatty acids

NP C-1 L-1:

Niemann Pick C-1L-1

ABCG5/ABCG8:

ATP-binding cassette transporter 5 and 8

MGAT:

acyl-CoA monoglycerolacyltransferase

DGAT:

acyl-CoA diglycerolacyltransferase

apoB-48:

Apolipoprotein B-48

apoB-100:

Apolipoprotein B-100

ACAT:

Acyl cholesterol acyltransferase

LPL:

Lipoprotein lipase

LRP:

Low density lipoprotein-like receptor protein

LDLR:

Low density lipoprotein receptor

HMG-CoA reductase:

Hydroxymethylglutaryl co-enzyme A reductase

MTP:

Microsomal triglyceride transport protein

apoC-I:

Apolipoprotein C-I

apoC-II:

Apolipoprotein C-II

apoC-III:

Apolipoprotein C-III

ARH:

Autosomal recessive hypercholesterolemia

SREBP:

Sterol regulatory element binding protein

PCSK9:

Proprotein convertase subtilisin-like kexin type 9

SCAP:

SREBP cleavage activating protein

SRE:

Sterol response element

SRA1:

Scavenger receptor class-A1

CD36:

Cluster of differentiation 36

ABCA1:

ATP-binding cassette transporter 1

CETP:

Cholesterol ester transfer protein

LCAT:

Lecithin cholesteryl acyl transferase

HL:

Hepatic lipase

PLTP:

Phospholipid transfer protein

SR-BI:

Scavenger receptor class B type 1

PDZK1:

PDZ-domain-containing protein

BAS:

Bile acid sequestrants

BA:

Bile acids

GPR109A:

G-protein-coupled receptor 109A

PPARα:

Peroxisome proliferator activated receptor alpha

AIM-HIGH:

Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes

FH:

Familial hypercholesterolemia

LXR:

Liver X receptor

GLP-1:

Glucagon-like peptide-1

FDB:

Familial defective apoB-100

FCHL:

Familial combined hyperlipidemia

hyperapoB:

Hyperapobetalipoproteinemia

USF1:

Upstream stimulatory factor 1

TCF7L2:

Transcription factor 7-like 2

HNF4alpha:

Hepatocyte nuclear factor 4

IGT:

Impaired glucose tolerance

GPIHBP1:

Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1

PHLA:

Postheparin lipolytic activity

FHT:

Familial hypertriglyceridemia

MCT:

Medium-chain triglycerides

EL:

Endothelial lipase

CRD:

Chylomicron retention disease

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kwiterovich PO. Lipid, apolipoprotein, and lipoprotein metabolism: implications for the diagnosis and treatment of dyslipidemia. In: Kwiterovich PO, editor. The Johns Hopkins textbook of dyslipidemia. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkens; 2010. p. 1–22.

    Google Scholar 

  2. Rodrigues-Oquendo A, Kwiterovich, Jr. PO. Dyslipidemias. In: Inborn Metabolic Diseases 4th (edn). Fernandes J, Saudubray J. 2012; pp 439–460.

  3. Hussain MM, Fatma S, Pan X, Iqbal J. Intestinal lipoprotein assembly. Curr Opin Lipidol. 2005;16:281–5.

    Article  PubMed  CAS  Google Scholar 

  4. Brown JM, Yu L. Protein mediators of sterol transport across intestinal brush border membrane. Subcell Biochem. 2010;51:337–80.

    Article  PubMed  CAS  Google Scholar 

  5. Mahley RW, Huang Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J Clin Invest. 2007;117:94–8.

    Article  PubMed  CAS  Google Scholar 

  6. Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012;92:1066–85.

    Article  CAS  Google Scholar 

  7. Hassing HC, Surendran RP, Mooij HL, et al. Pathophysiology of hypertriglyceridemia. Biochim Biophys Acta. 1821;2012:826–32.

    Google Scholar 

  8. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  PubMed  CAS  Google Scholar 

  9. Michaely P, Li W, Anderson R, et al. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits. J Biol Chem. 2004;279:34023–31.

    Article  PubMed  CAS  Google Scholar 

  10. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111:1795–803.

    PubMed  CAS  Google Scholar 

  11. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32:71–7.

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Huang Y, Hobbs HH, Cohen JC. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J Lipid Res. 2012;53:1932–43.

    Article  PubMed  CAS  Google Scholar 

  13. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–31.

    PubMed  CAS  Google Scholar 

  14. Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann NY Acad Sci. 2001;947:199–205.

    Article  PubMed  CAS  Google Scholar 

  15. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116:3090–100.

    Article  PubMed  Google Scholar 

  16. Tall AR, Yvan-Charvet L, Terasaka N, et al. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of Atherosclerosis. Cell Metab. 2008;7:365–75.

    Article  PubMed  CAS  Google Scholar 

  17. Kocher O, Krieger M. Role of the adapter protein PDZK1 in controlling the HDL receptor SR-B1. Curr Opin Lipidol. 2009;20:236–41.

    Article  PubMed  CAS  Google Scholar 

  18. Schaefer EJ, Lamon-Fava S, Cohn SD, et al. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham Offspring Study. J Lipid Res. 1994;35:779–92.

    PubMed  CAS  Google Scholar 

  19. Liu J, Sempos CT, Donahue RP, et al. Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol. 2006;98:1363–8.

    Article  PubMed  CAS  Google Scholar 

  20. Freedman DS, Otvos JD, Jeyarajah EJ, et al. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem. 2004;50:1189–200.

    Article  PubMed  CAS  Google Scholar 

  21. Schaefer EJ, Lamon-Fava S, Ordovas JM, et al. Factors associated with low and elevated plasma high density lipoprotein cholesterol and apolipoprotein A-I levels in the Framingham Offspring Study. J Lipid Res. 1994;35:871–82.

    PubMed  CAS  Google Scholar 

  22. Kwiterovich Jr PO, Byrne K. Diagnosis and treatment of dyslipoproteinemia in children and adolescents. In: Radovick S, MacGillivray MH, editors. Pediatric endocrinology: a practical clinical guide. 2nd ed. Dordrecht: Springer; 2013.

    Google Scholar 

  23. Hou R, Goldberg AC. Lowering low-density lipoprotein cholesterol: statins, ezetimibe, bile acid sequestrants, and combinations: comparative efficacy and safety. Endocrinol Metab Clin North Am. 2009;38:79–97.

    Article  PubMed  CAS  Google Scholar 

  24. Maki KC, Bays HE, Dicklin MR. Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. J Clin Lipidol. 2012;6:413–26.

    Article  PubMed  Google Scholar 

  25. Carlson LA. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Intern Med. 2005;258:94–114.

    Article  PubMed  CAS  Google Scholar 

  26. Lauring B, Taggart AK, Tata JR, et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci Transl Med. 2012;22;4(148):148ra115. doi:10.1126/scitranslmed.3003877.

  27. Meyers CD, Kashyap M. Pharmacologic augmentation of high-density lipoproteins: mechanisms of currently available and emerging therapies. Curr Opin Card. 2005;20:307–12.

    Google Scholar 

  28. Toth PP. Drug treatment of hyperlipidaemia: a guide to the rational use of lipid-lowering drugs. Drugs. 2010;70(11):1363–79.

    Article  PubMed  CAS  Google Scholar 

  29. Davidson M, Robinson JG. Safety of aggressive lipid management. J Am Coll Cardiol. 2007;49:1753–58.

    Article  PubMed  CAS  Google Scholar 

  30. Guyton JR. Combination regimens with statin, niacin, and intestinally active LDL-lowering drugs: alternatives to high-dose statin therapy? Curr Opin Lipidol. 2010;21:372–7.

    Article  PubMed  CAS  Google Scholar 

  31. Jukema JW, Cannon CP, de Craen AJ, et al. CD.: the controversies of statin therapy: weighing the evidence. J Am Coll Cardiol. 2012;60:875–81.

    Article  PubMed  CAS  Google Scholar 

  32. Gutierrez J, Ramirez G, Rundek T, Sacco RL. Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch Intern Med. 2012;25(172):909–19.

    Google Scholar 

  33. Agouridis AP, Filippatos TD, Tsimihodimos V, Elisaf MS. Combinations of ezetimibe with nonstatin drug regimens affecting lipid metabolism. Expert Rev Cardiovasc Ther. 2011;9:355–66.

    Article  PubMed  CAS  Google Scholar 

  34. Markel A. The resurgence of niacin: from nicotinic acid to niaspan/laropiprant. IMAJ. 2011;13:368–74.

    PubMed  Google Scholar 

  35. •• Michos ED, Sibley CT, Baer JT, et al. Niacin and statin combination therapy for atherosclerosis regression and prevention of cardiovascular disease events: reconciling the AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) trial with previous surrogate endpoint trials. J Am Coll Cardiol. 2012;59:2058–64. Superb review of the use of statins with Niaspan in AIM-HIGH and other studies.

    Article  PubMed  CAS  Google Scholar 

  36. Farnier M, Freeman MW, Macdonell G, et al. Efficacy and safety of the coadministration of ezetimibe with fenofibrate in patients with mixed hyperlipidaemia. Eur Heart J. 2005;26:897–905.

    Article  PubMed  CAS  Google Scholar 

  37. Farnier M, Dong Q, Shah A, et al. Low incidence of paradoxical reductions in HDL-C levels in dyslipidemic patients treated with fenofibrate alone or in combination with ezetimibe or ezetimibe/simvastatin. Lipids Health Dis. 2011;10:212.

    Article  PubMed  CAS  Google Scholar 

  38. Skulas-Ray AC, West SG, Davidson MH, Kris-Etherton PM. Omega-3 fatty acid concentrates in the treatment of moderate hypertriglyceridemia. Expert Opin Pharmacother. 2008;9:1237–48.

    Article  PubMed  CAS  Google Scholar 

  39. Watts GF, Mori TA. Recent advances in understanding the role and use of marine ωR polyunsaturated fatty acids in cardiovascular protection. Curr Opin Lipidol. 2011;22:70–1.

    Article  PubMed  CAS  Google Scholar 

  40. Barter P, Ginsberg HN. Effectiveness of combined statin plus omega-3 fatty acid therapy for mixed dyslipidemia. Am J Cardiol. 2008;102:1040–5.

    Article  PubMed  CAS  Google Scholar 

  41. Raal F, Scott R, Somaratne R, et al. Low-density lipoprotein cholesterol-lowering effects of amg 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: The Reduction of LDL-C With PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) Randomized Trial. Circulation. 2012;126:2408–17.

    Article  PubMed  CAS  Google Scholar 

  42. • Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to pcsk9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS Randomized Trial. JAMA. 2012;308(23):2497–506. doi:10.1001/jama.2012.25790. Raised the possibility that statin-resistant patients may be able to take an inhibitor to PCSK9 to lower their LDL to goal.

    PubMed  CAS  Google Scholar 

  43. • Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363:2406–15. Provides evidence for the safety and efficacy of a CETP inhibitor.

    Article  PubMed  CAS  Google Scholar 

  44. Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature. 2008;451:904–13.

    Article  PubMed  CAS  Google Scholar 

  45. Out C, Groen AK, Brufau G. Bile acid sequestrants: more than simple resins. Curr Opin Lipidol. 2012;23:43–55.

    Article  PubMed  CAS  Google Scholar 

  46. Holst JJ, McGill MA. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes mellitus: focus on bile acid sequestrants. Clin Drug Invest. 2012;32:1–14.

    Article  CAS  Google Scholar 

  47. Goldstein JL, Brown MS. Molecular medicine. The cholesterol quartet. Science. 2001;292:1310–2.

    Article  PubMed  CAS  Google Scholar 

  48. Innerarity TL, Mahley RW, Weisgraber KH, et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990;31:1337–49.

    PubMed  CAS  Google Scholar 

  49. Pietzsch J, Wiedemann B, Julius U, et al. Increased clearance of low density lipoprotein precursors in patients with heterozygous familial defective apolipoprotein B-100: a stable isotope approach. J Lipid Res. 1996;37:2074–87.

    PubMed  CAS  Google Scholar 

  50. Arca M, Zuliani G, Wilund K, et al. Autosomal recessive hypercholesterolemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet. 2002;259:841–7.

    Article  Google Scholar 

  51. Lind S, Olsson AG, Eriksson M, et al. Autosomal recessive hypercholesterolemia: normalization of plasma LDL cholesterol by ezetimibe in combination with statin treatment. J Intern Med. 2004;256:406–12.

    Article  PubMed  CAS  Google Scholar 

  52. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290:1771–5.

    Article  PubMed  CAS  Google Scholar 

  53. Lu K, Lee MH, Hazard S, et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet. 2001;69:278–90.

    Article  PubMed  Google Scholar 

  54. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  PubMed  CAS  Google Scholar 

  55. Pullinger CR, Eng C, Salen G, et al. Human cholesterol 7alph-hydroxylase (CYP7A1) defieciency has a hypercholesterolemic phenotype. J Clin Invest. 2002;110:109–17.

    PubMed  CAS  Google Scholar 

  56. Raal FJ, Pilcher GJ, Panz VR, et al. Reduction in mortality in subjects with familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124:2202–7.

    Article  PubMed  CAS  Google Scholar 

  57. Gagne C, Gaudet D, Bruckert E, Ezetimibe Study Group. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation. 2002;105:2469–75.

    Article  PubMed  CAS  Google Scholar 

  58. El-Rassi I, Chehab G, Saliba Z, et al. Fatal cardiac atherosclerosis in a child 10 years after liver transplantation: a case report and a review. J Clin Lipidol. 2011;5:329–32.

    Article  PubMed  Google Scholar 

  59. Shefer S, Salen G, Bullock J, et al. The effect of increased hepatic sitosterol on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase in the rat and sitosterolemic homozygotes. Hepatology. 1994;20:213–9.

    PubMed  CAS  Google Scholar 

  60. Salen G, Kwiterovich Jr PO, Shefer S, et al. Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. J Lipid Res. 1985;26:203–9.

    PubMed  CAS  Google Scholar 

  61. Salen G, von Bergmann K, Lütjohann D, et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation. 2004;109:966–71.

    Article  PubMed  CAS  Google Scholar 

  62. Salen G, Starc T, Sisk CM, Patel SB. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Gastroenterology. 2006;130:1853–7.

    Article  PubMed  Google Scholar 

  63. Kwiterovich PO. Clinical relevance of the biochemical, metabolic and genetic factors that influence low density lipoprotein heterogeneity. Am J Card. 2002;90(Suppl 8A):30i–48.

    Article  PubMed  CAS  Google Scholar 

  64. Browers MC, van Greevenbroek MM, Stehouwer CD. The genetics of familial combined hyperlipidaemia. Nat Rev Endocrinol. 2012;8:352–62.

    Google Scholar 

  65. Mudd JO, Borlaug BA, Johnston PV, et al. Beyond low-density lipoprotein cholesterol: defining the role of low-density lipoprotein heterogeneity in coronary artery disease. J Am Coll Cardiol. 2007;50:1735–41.

    Article  PubMed  CAS  Google Scholar 

  66. Sniderman A, Scantlebury T, Cianflone K. Hypertriglyceridemic hyperapob: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med. 2001;135:447–59.

    Article  PubMed  CAS  Google Scholar 

  67. Maslowska M, Wang HW, Cianflone K. Novel roles for acylation stimulatory protein/C3a desArg: a review of recent in vitro and in vivo evidence. Vitam Horm. 2005;70:309–32.

    Article  PubMed  CAS  Google Scholar 

  68. • Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52:189–206. Excellent article on the genetics of high triglycerides.

    Article  PubMed  CAS  Google Scholar 

  69. Adeyo O, Goulbourne CN, Bensadoun A, et al. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins. J Intern Med. 2012;272:528–40.

    Article  PubMed  CAS  Google Scholar 

  70. Sharma V, Ryan RO, Forte TM. Apolipoprotein A-V dependent modulation of plasma triacylglycerol: a puzzlement. Biochim Biophys Acta. 2012;821:795–9.

    Google Scholar 

  71. Mahley RW, Huang Y, Rall Jr SC. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). J Lipid Res. 1999;40:1933–49.

    PubMed  CAS  Google Scholar 

  72. Mahley RW, Rall Jr SC. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genom Hum Genet. 2000;1:507–37.

    Article  CAS  Google Scholar 

  73. Ruel IL, Couture P, Gagne C, et al. Characterization of a novel mutation causing hepatic lipase deficiency among French Canadians. J Lipid Res. 2003;44:1508–14.

    Article  PubMed  CAS  Google Scholar 

  74. Deeb SS, Zambon A, Carr MC, et al. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J Lipid Res. 2003;44:1279–86.

    Article  PubMed  CAS  Google Scholar 

  75. Rouis M, Dugi KA, Previato L, et al. Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol. 1997;17:1400–6.

    Article  PubMed  CAS  Google Scholar 

  76. Heaney AP, Sharer N, Rameh B, et al. Prevention of recurrent pancreatitis in familial lipoprotein lipase deficiency with high-dose antioxidant therapy. J Clin Endocrinol Metab. 1999;84:1203–5.

    Article  PubMed  CAS  Google Scholar 

  77. Richter WO, Jacob BG, Ritter MM, Schwandt P. Treatment of primary chylomicronemia due to familial hypertriglyceridemia by omega-3 fatty acids. Metabolism. 1992;41:1100–5.

    Article  PubMed  CAS  Google Scholar 

  78. Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res. 2010;51:2032–57.

    Article  PubMed  CAS  Google Scholar 

  79. Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305:869–72.

    Article  PubMed  CAS  Google Scholar 

  80. Assmann G, von Ekardstein A, Funcke H. High density lipoproteins, reverse cholesterol transport of cholesterol, and coronary artery disease: insights from mutations. Circulation. 1993;87 Suppl 4:III 28–34.

    CAS  Google Scholar 

  81. Lusis AJ, Fogelman AM, Fonarow GC. Genetic basis of atherosclerosis: clinical implications. Circulation. 2004;110:2066–71.

    Article  PubMed  Google Scholar 

  82. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant Apo A-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.

    Article  PubMed  CAS  Google Scholar 

  83. Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr. 2006;26:105–29.

    Article  PubMed  CAS  Google Scholar 

  84. Calabresi L, Piscotta L, Costantin A, et al. The molecular basis of lecithin: cholesterol acyltransferase deficiency syndromes. A comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Throm Vasc Biol. 2005;25:1972–8.

    Article  CAS  Google Scholar 

  85. Tietjen I, Hovingh GK, Singaraja RR, et al. Segregation of LIPG, CETP, and GALNT2 mutations in Caucasian families with extremely high HDL cholesterol. PLoS One. 2012;7:e37437.

    Article  PubMed  CAS  Google Scholar 

  86. Barter PJ, Brewer Jr HB, Chapman MJ, et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23:160–7.

    Article  PubMed  CAS  Google Scholar 

  87. West M, Greason E, Kolmakova A, et al. Scavenger receptor class B type I protein as an independent predictor of HDL cholesterol levels in subjects with hyperalphalipoproteinemia. J Clin Endocrinol Metab. 2009;4:1451–7.

    Article  CAS  Google Scholar 

  88. Naj AC, West M, Rich SS, et al. Association of scavenger receptor class B type I polymorphisms with subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Genet. 2010;3:47–52.

    Article  PubMed  CAS  Google Scholar 

  89. Edmondson AC, Brown RJ, Kathiresan S, et al. Loss-of-function variants in endothelial lipases are a cause of elevated HDL-C in humans. J Clin Invest. 2009;119:1042–50.

    PubMed  CAS  Google Scholar 

  90. • Dubé JB, Boffa MB, Hegele RA, Koschinsky ML. Lipoprotein(a): more interesting than ever after 50 years. Curr Opin Lipidol. 2012;23:133–40. Provides recent data indicating that Lp (a) is an independent risk factor for CAD and stroke.

    Article  PubMed  CAS  Google Scholar 

  91. Schonfeld G, Lin X, Yue P. Familial Hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci. 2005;62:1372–8.

    Article  PubMed  Google Scholar 

  92. Musunuru K, Pirrucello JP, Do R, et al. Exon sequencing. ANGPTL 3 mutations and familial combined hypolipidemia. N Eng J Med. 2010;363:2220–7.

    Article  CAS  Google Scholar 

  93. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. NEJM. 2006;354:1264–72.

    Article  PubMed  CAS  Google Scholar 

  94. Vongsuvanh R, Hooper AJ, Coakley JC, et al. Novel mutations in abetalipoproteinemia and homozygous familial hypobetalipoproteinemia. J Inherit Metab Dis. 2007;30:990.

    Article  PubMed  CAS  Google Scholar 

  95. Bouma ME, Beucler P, Aggerbeck Infante LP, Schmitz J. Hypobetalipoproteinemia with accumulation of an apoB like protein in intestinal cells: immunoenzymatic and biochemical characterization of seven cases of Anderson’s disease. J Clin Invest. 1986;78:398–410.

    Article  PubMed  CAS  Google Scholar 

  96. Peretti N, Sassolas A, Roy CC, et al. Guidelines for the diagnosis and treatment of chylomicron retention disease based on the review of the literature and the experience of two centers. Orphanet J Rare Dis. 2010;201(5):24–34.

    Article  Google Scholar 

Download references

Conflict of Interest

Peter O. Kwiterovich, Jr. has received grant support from Merck, Inc., Pfizer, Abbott/NIH, SmithKlineBeecham, and Amarin. He has also received travel/accommodations expenses covered or reimbursed from Merck, Sanofi, and Aegerion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. Kwiterovich Jr..

Additional information

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwiterovich, P.O. Diagnosis and Management of Familial Dyslipoproteinemias. Curr Cardiol Rep 15, 371 (2013). https://doi.org/10.1007/s11886-013-0371-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0371-5

Keywords

Navigation