Skip to main content

Advertisement

Log in

Is Any Cardiovascular Disease-Specific DNA Methylation Biomarker Within Reach?

  • Genetics and Genomics (A.J. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A detailed understanding of the epigenome of cardiovascular disease (CVD) should broaden current insights into mechanisms of atherogenesis and help identify suitable biomarkers for disease risk and progression. This review addresses the question whether a consensus has been reached on identifying the main aberrant DNA methylation profile in CVD. Additionally, it presents advances and setbacks in the search for specific CVD biomarkers.

Recent Findings

Although the literature points to DNA hypermethylation as an epigenetic landmark of CVD, inconsistencies are significant. In particular, the DNA methylomes of peripheral blood cells and the vascular wall do not show a consistent direction of change in all studies. An additional significant hurdle is the relatively low study-to-study reproducibility and the difficulty to assess specificity for CVD. Nonetheless, a number of biologically plausible markers have been proposed that warrant further studies.

Summary

An integrated model for dynamic changes of DNA methylation during the natural history of atherosclerosis predisposition and progression is presented, that might reconcile conflicting findings. Cohort design and technical criteria for DNA methylation analysis need to be further homogenized to allow for meaningful validation. As stable DNA methylation profiles are likely determined by genetic variants, many of which might control a range of diseases, it is anticipated that CVD biomarker discovery will be a delicate balancing act between reproducibility and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization (2017) Cardiovascular diseases (CVDs). In: Cardiovasc. Dis. Key facts. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

  2. Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH. Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Ann Hepatol. 2017;16:S27–42. https://doi.org/10.5604/01.3001.0010.5495.

    Article  CAS  PubMed  Google Scholar 

  3. Aavik E, Babu M, Ylä-Herttuala S. DNA methylation processes in atheosclerotic plaque. Atherosclerosis. 2019;S0021-9150:31526–0.

    Google Scholar 

  4. Peng J, Luo F, Ruan G, Peng R, Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis. 2017;16:233. https://doi.org/10.1186/s12944-017-0625-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mandviwala T, Khalid U, Deswal A. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep. 2016;18. https://doi.org/10.1007/s11883-016-0575-4.

  6. Karmali KN, Lloyd-Jones DM, Berendsen MA, Goff DC, Sanghavi DM, Brown NC, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. 2016;1:341–9.

    PubMed  PubMed Central  Google Scholar 

  7. Katakami N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb. 2018;25:27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chrysant SG, Chrysant GS. The current status of homocysteine as a risk factor for cardiovascular disease: a mini review. Expert Rev Cardiovasc Ther. 2018;16:559–65.

    CAS  PubMed  Google Scholar 

  9. Ärnlöv J, Pencina MJ, Amin S, Nam BH, Benjamin EJ, Murabito JM, et al. Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med. 2006;145:176–84.

    PubMed  Google Scholar 

  10. Jin J, Liu Y, Huang L, Tan H. Advances in epigenetic regulation of vascular aging. Rev Cardiovasc Med. 2019;20:19–25.

    PubMed  Google Scholar 

  11. Sun Q, Ma JS, Wang H, Xu SH, Zhao JK, Gao Q, et al. Associations between dietary patterns and 10-year cardiovascular disease risk score levels among Chinese coal miners - - a cross-sectional study. BMC Public Health. 2019;19:1–13.

    Google Scholar 

  12. Wang Z, Wang D, Wang Y. Cigarette smoking and adipose tissue: the emerging role in progression of atherosclerosis. Mediat Inflamm. 2017;2017:1–11.

    Google Scholar 

  13. Piano MR. Alcohol’s effects on the cardiovascular system. Alcohol Res. 2017;38:219–41.

    PubMed  PubMed Central  Google Scholar 

  14. Unkart JT, Allison MA, Parada H, et al. Sedentary time and peripheral artery disease: the Hispanic community health study/study of Latinos. Am Heart J. 2020;222:208–19.

    PubMed  Google Scholar 

  15. Stylianou IM, Bauer RC, Reilly MP, Rader DJ. Genetic basis of atherosclerosis: insights from mice and humans. Circ Res. 2012;110:337–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118:564–78.

    CAS  PubMed  Google Scholar 

  17. Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23.

    PubMed  PubMed Central  Google Scholar 

  18. Grin I, Ishchenko AA. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Res. 2016;44:3713–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lund G, Zaina S. Epigenetics, the vascular wall and atherosclerosis. In: Hutaniemi I, editor. Encycl. Endocr. Dis. 2nd ed; 2018. p. 302–13.

    Google Scholar 

  20. Yin Y, Morgunova E, Jolma A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science (80-). 2017;356:eaaj2239.

    Google Scholar 

  21. Lewis JR, McNab TJ, Liew LJ, Tan J, Hudson P, Wang JZ, et al. DNA methylation within the I.4 promoter region correlates with CYPl19A1 gene expression in human ex vivo mature omental and subcutaneous adipocytes. BMC Med Genet. 2013;14:87.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Spainhour JCG, Lim HS, Yi SV, Qiu P. Correlation patterns between DNA methylation and gene expression in the cancer genome atlas. Cancer Informat. 2019;18:117693511982877. https://doi.org/10.1177/1176935119828776.

    Article  Google Scholar 

  23. Arechederra M, Daian F, Yim A, Bazai SK, Richelme S, Dono R, et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat Commun. 2018;9:3164. https://doi.org/10.1038/s41467-018-05550-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaina S. Unraveling the DNA methylome of atherosclerosis. Curr Opin Lipidol. 2014;25:148–53.

    CAS  PubMed  Google Scholar 

  25. Law P-P, Holland ML. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem. 2019;63:717–26. https://doi.org/10.1042/EBC20190031.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dekkers KF, van Iterson M, Slieker RC, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17:138.

    PubMed  PubMed Central  Google Scholar 

  27. Agha G, Mendelson MM, Ward-Caviness CK, Joehanes R, Huan TX, Gondalia R, et al. Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation. 2019;140:645–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.

    CAS  PubMed  Google Scholar 

  29. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147–54.

    CAS  PubMed  Google Scholar 

  30. Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8:389–99.

    CAS  Google Scholar 

  31. •• Gunasekara CJ, Scott CA, Laritsky E, et al. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol. 2019;20:105 A genome-wide survey of loci with differential epigenetic variation in humans.

    PubMed  PubMed Central  Google Scholar 

  32. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33:5868–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kirschner SA, Hunewald O, Mériaux SB, Brunnhoefer R, Muller CP, Turner JD. Focussing reduced representation CpG sequencing through judicious restriction enzyme choice. Genomics. 2016;107:109–19.

    CAS  PubMed  Google Scholar 

  34. Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700.

    CAS  PubMed  Google Scholar 

  35. • Declerck K, Vanden Berghe W. Characterization of blood surrogate immune-methylation biomarkers for immune cell infiltration in chronic inflammaging disorders. Front Genet. 2019;10:1229 A meta-analysis of CVD epigenomics data.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Valencia-Morales M d P, Zaina S, Heyn H, et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med Genet. 2015;8:7.

    Google Scholar 

  37. Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng M, et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci Rep. 2016;6:30053.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao Q, Wang X, Jia L, Mondal AK, Diallo A, Hawkins GA, et al. Inhibiting DNA methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology. 2014;155:4925–38.

    PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Xu Y, Yan S, Cao K, Zeng X, Zhou Y, et al. Adenosine kinase is critical for neointima formation after vascular injury by inducing aberrant DNA hypermethylation. Cardiovasc Res. 2020. https://doi.org/10.1093/cvr/cvaa040.

  41. Rangel-Salazar R, Wickström-Lindholm M, Aguilar-Salinas CA, Alvarado-Caudillo Y, Døssing KBV, Esteller M, et al. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages. BMC Genomics. 2011;12:582.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Q, Zhang Y, Meng Q, Wang S, Yu X, Cai D, et al. Liuwei Dihuang prevents postmenopausal atherosclerosis and endothelial cell apoptosis via inhibiting DNMT1-medicated ERα methylation. J Ethnopharmacol. 2020;252:112531.

    CAS  PubMed  Google Scholar 

  43. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta - Gene Regul Mech. 2014;1839:627–43.

    CAS  Google Scholar 

  44. Manea S-A, Vlad M-L, Fenyo IM, Lazar A-G, Raicu M, Muresian H, et al. Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol. 2020;28:101338.

    CAS  PubMed  Google Scholar 

  45. Peng J, Yang Q, Li A-F, Li RQ, Wang Z, Liu LS, et al. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE−/− mice. Oncotarget. 2016;7:76423–36.

    PubMed  PubMed Central  Google Scholar 

  46. • Li B, Zang G, Zhong W, Chen R, Zhang Y, Yang P, et al. Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferrring from endothelial cell-derived exosomes to vascular smooth muscle cells. Biomed Pharmacother. 2019;121:109593 Documents the participation of the active DNA demethylation machinery in CVD.

    PubMed  Google Scholar 

  47. Zaina S, Gonçalves I, Carmona FJ, Gomez A, Heyn H, Mollet IG, et al. DNA methylation dynamics in human carotid plaques after cerebrovascular events. Arterioscler Thromb Vasc Biol. 2015;35:1835–42.

    CAS  PubMed  Google Scholar 

  48. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Zhao D, Lu P, Sheng J. TET2 might be a therapeutic target for atherosclerosis. Int J Cardiol. 2016;203:396–7.

    PubMed  Google Scholar 

  50. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147–54.

    CAS  PubMed  Google Scholar 

  51. Castillo-Díaz SA, Garay-Sevilla ME, Hernández-González MA, Solís-Martínez MO, Zaina S. Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med. 2010;26:691–700.

    PubMed  Google Scholar 

  52. Aavik E, Lumivuori H, Leppänen O, et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J. 2014;36:993–1000.

    PubMed  Google Scholar 

  53. Lokk K, Modhukur V, Rajashekar B, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:r54.

    PubMed  PubMed Central  Google Scholar 

  54. Nazarenko MS, Puzyrev VP, Lebedev IN, Frolov AV, Barbarash OL, Barbarash LS. Methylation profiling of DNA in the area of atherosclerotic plaque in humans. Mol Biol. 2011;45:561–6.

    CAS  Google Scholar 

  55. •• Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review. Atherosclerosis. 2017;263:325–33 Essential reading to gain a broad view of CVD epigenomics.

    PubMed  Google Scholar 

  56. Jiang D, Sun M, You L, Lu K, Gao L, Hu C, et al. DNA methylation and hydroxymethylation are associated with the degree of coronary atherosclerosis in elderly patients with coronary heart disease. Life Sci. 2019;224:241–8. https://doi.org/10.1016/j.lfs.2019.03.021.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang D, Wang Y, Chang G, et al. DNA hydroxymethylation combined with carotid plaques as a novel biomarker for coronary atherosclerosis. Aging (Albany NY). 2019. https://doi.org/10.18632/aging.101972.

  58. de la Rocha C, Pérez-Mojica E, León SZ, et al. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep. 2016;6:25867.

    PubMed  PubMed Central  Google Scholar 

  59. Ollikainen M, Ismail K, Gervin K, Kyllönen A, Hakkarainen A, Lundbom J, et al. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics. 2015;7:39.

    PubMed  PubMed Central  Google Scholar 

  60. Rakyan VK, Beyan H, Down TA, et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011;7:e1002300.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21:371–83.

    CAS  PubMed  Google Scholar 

  62. Sánchez I, Reynoso-Camacho R, Salgado LM. The diet-induced metabolic syndrome is accompanied by whole-genome epigenetic changes. Genes Nutr. 2015;10:471.

    PubMed  Google Scholar 

  63. Istas G, Declerck K, Pudenz M, Szic KS, Lendinez-Tortajada V, Leon-Latre M, et al. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci Rep. 2017;7:5120.

    PubMed  PubMed Central  Google Scholar 

  64. Soriano-Tárraga C, Lazcano U, Giralt-Steinhauer E, et al. Identification of 20 novel loci associated to ischemic stroke. Epigenome-wide association study. Epigenetics. 2020: in press.

  65. • Liu Y, Reynolds LM, Ding J, et al. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nat Commun. 2017;8:393 Exploits both descriptive epigenomics and mechanistic approaches to gain novel insights into monocyte biology. Identifies epigenetic profiles that are stable over time.

    PubMed  PubMed Central  Google Scholar 

  66. Li J, Zhu X, Yu K, Jiang H, Zhang Y, Deng S, et al. Genome-wide analysis of DNA methylation and acute coronary syndrome. Circ Res. 2017;120:1754–67. https://doi.org/10.1161/CIRCRESAHA.116.310324.

    Article  CAS  PubMed  Google Scholar 

  67. Banerjee S, Ponde CK, Rajani RM, Ashavaid TF. Differential methylation pattern in patients with coronary artery disease: pilot study. Mol Biol Rep. 2019;46:541–50.

    CAS  PubMed  Google Scholar 

  68. Oh-hashi K, Koga H, Ikeda S, Shimada K, Hirata Y, Kiuchi K. CRELD2 is a novel endoplasmic reticulum stress-inducible gene. Biochem Biophys Res Commun. 2009;387:504–10.

    CAS  PubMed  Google Scholar 

  69. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116:1226–33.

    PubMed  Google Scholar 

  70. Pan J, Han L, Guo J, Wang X, Liu D, Tian J, et al. AIM2 accelerates the atherosclerotic plaque progressions in ApoE−/− mice. Biochem Biophys Res Commun. 2018;498:487–94.

    CAS  PubMed  Google Scholar 

  71. Ligthart S, Marzi C, Aslibekyan S, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255. https://doi.org/10.1186/s13059-016-1119-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Myte R, Sundkvist A, Van Guelpen B, Harlid S. Circulating levels of inflammatory markers and DNA methylation, an analysis of repeated samples from a population based cohort. Epigenetics. 2019;14:649–59.

    PubMed  PubMed Central  Google Scholar 

  73. Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281:99–114.

    CAS  PubMed  Google Scholar 

  74. •• Zaghlool SB, Kühnel B, Elhadad MA, et al. Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-13831-wOne of the few studies that seek associations between epigenetic marks and the proteome.

  75. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20:249.

    PubMed  PubMed Central  Google Scholar 

  76. Rahmani E, Schweiger R, Rhead B, Criswell LA, Barcellos LF, Eskin E, et al. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat Commun. 2019;10:3417.

    PubMed  PubMed Central  Google Scholar 

  77. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J, et al. DNA methylation contributes to natural human variation. Genome Res. 2013;23:1363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Garg P, Joshi RS, Watson C, Sharp AJ. A survey of inter-individual variation in DNA methylation identifies environmentally responsive co-regulated networks of epigenetic variation in the human genome. PLoS Genet. 2018;14:e1007707. https://doi.org/10.1371/journal.pgen.1007707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, et al. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis. 2013;34:102–8.

    CAS  PubMed  Google Scholar 

  80. Ong ML, Holbrook JD. Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell. 2014;13:142–55.

    CAS  Google Scholar 

  81. van Westerop LLM, Arts-de Jong M, Hoogerbrugge N, de Hullu JA, Maas AHEM. Cardiovascular risk of BRCA1/2 mutation carriers: a review. Maturitas. 2016;91:135–9.

    PubMed  Google Scholar 

  82. Singh KK, Shukla PC, Quan A, al-Omran M, Lovren F, Pan Y, et al. BRCA1 is a novel target to improve endothelial dysfunction and retard atherosclerosis. J Thorac Cardiovasc Surg. 2013;146:949–60.

    CAS  PubMed  Google Scholar 

  83. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13:R43.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lowe R, Slodkowicz G, Goldman N, Rakyan VK. The human blood DNA methylome displays a highly distinctive profile compared with other somatic tissues. Epigenetics. 2015;10:274–81.

    PubMed  PubMed Central  Google Scholar 

  85. Feinberg AP, Irizarry RA. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107(Suppl):1757–64.

    CAS  PubMed  Google Scholar 

  86. Jiang R, Jones MJ, Chen E, Neumann SM, Fraser HB, Miller GE, et al. Discordance of DNA methylation variance between two accessible human tissues. Sci Rep. 2015;5:8257.

    PubMed  PubMed Central  Google Scholar 

  87. Gómez-Úriz AM, Milagro FI, Mansego ML, Cordero P, Abete I, de Arce A, et al. Obesity and ischemic stroke modulate the methylation levels of KCNQ1 in white blood cells. Hum Mol Genet. 2015;24:1432–40.

    PubMed  Google Scholar 

  88. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40:904–8.

    CAS  PubMed  Google Scholar 

  89. Zhang W, Gamazon ER, Zhang X, Konkashbaev A, Liu C, Szilágyi KL, et al. SCAN database: facilitating integrative analyses of cytosine modification and expression QTL. Database (Oxford). 2015;2015. https://doi.org/10.1093/database/bav025.

  90. Gong J, Wan H, Mei S, Ruan H, Zhang Z, Liu C, et al. Pancan-meQTL: a database to systematically evaluate the effects of genetic variants on methylation in human cancer. Nucleic Acids Res. 2019;47:D1066–72.

    CAS  PubMed  Google Scholar 

  91. Benson KK, Hu W, Weller AH, Bennett AH, Chen ER, Khetarpal SA, et al. Natural human genetic variation determines basal and inducible expression of PM20D1, an obesity-associated gene. Proc Natl Acad Sci U S A. 2019;116:23232–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sanchez-Mut JV, Heyn H, Silva BA, Dixsaut L, Garcia-Esparcia P, Vidal E, et al. PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat Med. 2018;24:598–603.

    CAS  PubMed  Google Scholar 

  93. Sanchez-Mut JV, Glauser L, Monk D, Gräff J. Comprehensive analysis of PM20D1 QTL in Alzheimer’s disease. Clin Epigenetics. 2020;12:20.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gunawardhana LP, Baines KJ, Mattes J, Murphy VE, Simpson JL, Gibson PG. Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr Pulmonol. 2014;49:852–62.

    PubMed  Google Scholar 

  95. Renauer P, Coit P, Jeffries MA, Merrill JT, McCune WJ, Maksimowicz-McKinnon K, et al. DNA methylation patterns in naïve CD4+ T cells identify epigenetic susceptibility loci for malar rash and discoid rash in systemic lupus erythematosus. Lupus Sci Med. 2015;2:e000101.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Mexican National Council for Research and Technology (CONACyT) Basic Science ("Ciencia Básica) grant no. A1-S-51654 to G.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertrud Lund.

Ethics declarations

Conflict of Interest

Carmen de la Rocha and Gertrud Lund declare no conflict of interest. Dr. Zaina has a patent “Nanoparticle-based epigenome editing in atherosclerosis” pending to University of Guanajuato and a patent “Peptide-based epigenome editing in atherosclerosis” pending to University of Guanajuato.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genetics and Genomics

Copyright

Figures and tables are original and were created entirely with inputs from each of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Rocha, C., Zaina, S. & Lund, G. Is Any Cardiovascular Disease-Specific DNA Methylation Biomarker Within Reach?. Curr Atheroscler Rep 22, 62 (2020). https://doi.org/10.1007/s11883-020-00875-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00875-3

Keywords

Navigation