Skip to main content
Log in

Connecting the Dots Between Fatty Acids, Mitochondrial Function, and DNA Methylation in Atherosclerosis

  • Genetics and Genomics (A Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The quest for factors and mechanisms responsible for aberrant DNA methylation in human disease—including atherosclerosis—is a promising area of research. This review focuses on the role of fatty acids (FAs) as modulators of DNA methylation—in particular the role of mitochondrial beta-oxidation in FA-induced changes in DNA methylation during the progression of atherosclerosis.

Recent Findings

Recent publications have advanced the knowledge in all areas touched by this review: the causal role of lipids in shaping the DNA methylome, the associations between chronic degenerative disease and mitochondrial function, the lipid composition of the atheroma, and the relevance of DNA hypermethylation in atherosclerosis.

Summary

Evidence is beginning to emerge, linking the dynamics of FA type abundance, mitochondrial function, and DNA methylation in the atheroma and systemically. In particular, this review highlights mitochondrial beta-oxidation as an important regulator of DNA methylation in metabolic disease. Despite the many questions still unanswered, this area of research promises to identify mechanisms and molecular factors that establish a pathological gene expression pattern in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175:315–32.

    CAS  PubMed  Google Scholar 

  2. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper DN, Taggart MH, Bird AP. Unmethylated domains in vertebrate DNA. Nucleic Acids Res. 1983;11:647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985; 40:91–9.

  5. Edwards JR, O’Donnell AH, Rollins RA, et al. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res. 2010;20:972–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang MQ, Ioshikhes IP. Large-scale human promoter mapping using CpG islands. Nat Genet. 2000;26:61–3.

    Article  PubMed  Google Scholar 

  8. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

    Article  CAS  PubMed  Google Scholar 

  10. Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci. 2015;112:6796–9.

    Article  CAS  PubMed  Google Scholar 

  11. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc B Biol Sci. 2012;368:20110330.

    Article  Google Scholar 

  12. Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet. 2016;17:585–600.

    Article  CAS  PubMed  Google Scholar 

  13. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339:448–52.

    Article  CAS  PubMed  Google Scholar 

  14. Bestor TH. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992;11:2611–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002–10.

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25:2436–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.

    Article  CAS  PubMed  Google Scholar 

  18. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11:6883–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zoghbi HY, Beaudet AL. Epigenetics and human disease. Cold Spring Harb Perspect Biol. 2016;8:a019497.

    Article  PubMed  Google Scholar 

  20. Feinberg AP, Irizarry RA, Fradin D, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med. 2010;2:49ra67.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Zhu H, Snieder H, et al. Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 2010;8:87.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murphy SK, Yang H, Moylan CA, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dayeh T, Volkov P, Salö S, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10:e1004160.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700.

    Article  CAS  PubMed  Google Scholar 

  25. • Paul DS, Teschendorff AE, Dang MANN, et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun. 2016;7:13555. This article highlights the importance of cell type on DNA methylation variability in the analysis of genome and gene-specific methylation profiles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hansen KD, Timp W, Bravo HC, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43:768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D, et al. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013;8:522–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs M-O, Fañanás L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl Psychiatry. 2015;5:e557.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147–54.

    Article  CAS  PubMed  Google Scholar 

  30. Valencia-Morales Mdel P, Zaina S, Heyn H, et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med Genomics 2015;8:7.

  31. Rakyan VK, Beyan H, Down TA, et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011;7:e1002300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21:371–83.

    Article  CAS  PubMed  Google Scholar 

  33. Bell JT, Tsai PC, Yang TP, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8:e1002629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turunen MP, Aavik E, Ylä-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta. 2009;1790:886–91.

    Article  CAS  PubMed  Google Scholar 

  35. Sayols-Baixeras S, Irvin MR, Elosua R, Arnett DK, Aslibekyan SW. Epigenetics of lipid phenotypes. Curr Cardiovasc Risk Rep. 2016;10:31.

    Article  PubMed  Google Scholar 

  36. Houseman EA, Kelsey KT, Wiencke JK, Marsit CJ. Cell-composition effects in the analysis of DNA methylation array data: a mathematical perspective. BMC Bioinformatics. 2015;16:95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dunn J, Qiu H, Kim S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao Q, Wang X, Jia L, et al. Inhibiting DNA methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology. 2014;155:4925–38.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng M, et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci Rep. 2016;6:30053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu R, Jin Y, Tang WH, Qin L, Zhang X, Tellides G, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128:2047–57.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zaina S, Gonçalves I, Carmona FJ, Gomez A, Heyn H, Mollet IG, et al. DNA methylation dynamics in human carotid plaques after cerebrovascular events. Arterioscler Thromb Vasc Biol. 2015;35:1835–42.

    Article  CAS  PubMed  Google Scholar 

  42. Peeters W, Hellings WE, De Kleijn DP, De Vries JP, Moll FL, Vink A, et al. Carotid atherosclerotic plaques stabilize after stroke: insights into the natural process of atherosclerotic plaque stabilization. Arterioscler Thromb Vasc Biol. 2009;29:128–33.

    Article  CAS  PubMed  Google Scholar 

  43. Vaiserman A. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin Epigenetics. 2015;7:96.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barrès R, Zierath JR. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol. 2016;12:441–51.

    Article  PubMed  Google Scholar 

  45. Zheng J, Xiao X, Zhang Q, Yu M. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr. 2014;112:1850–7.

    Article  CAS  PubMed  Google Scholar 

  46. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet (London, England). 1989;2:577–80.

    Article  CAS  Google Scholar 

  47. Burdge GC, Hoile SP, Uller T, Thomas NA, Gluckman PD, Hanson MA, et al. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS One. 2011;6:e28282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Öst A, Lempradl A, Casas E, et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159:1352–64.

    Article  PubMed  Google Scholar 

  49. Radford EJ, Ito M, Shi H, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;345:1255903.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gaydos LJ, Wang W, Strome S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science. 2014;345:1515–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strakovsky RS, Zhang X, Zhou D, Pan Y-X. The regulation of hepatic Pon1 by a maternal high-fat diet is gender specific and may occur through promoter histone modifications in neonatal rats. J Nutr Biochem. 2014;25:170–6.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes DE, Piekarz A, Ferland-McCollough D, et al. Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab. 2014;3:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fullston T, Ohlsson Teague EMC, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27:4226–43.

    Article  CAS  PubMed  Google Scholar 

  54. de Castro Barbosa T, Ingerslev LR, Alm PS, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5:184–97.

    Article  PubMed  Google Scholar 

  55. Zander-Fox DL, Fullston T, McPherson NO, Sandeman L, Kang WX, Good SB, et al. Reduction of mitochondrial function by FCCP during mouse cleavage stage embryo culture reduces birth weight and impairs the metabolic health of offspring1. Biol Reprod. 2015;92:124.

    Article  PubMed  Google Scholar 

  56. • Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, Zhang W, et al. Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep. 2016;16:1–8. Highlights the important role of mitochondria in transgenerational inheritance of metabolic sydrome induced by high fat/high sucrose diet in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. •• Hou Y-J, Zhu C-C, Duan X, Liu H-L, Wang Q, Sun S-C. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep. 2016;6:18858. Important evidence that the ovary exposed to high fat diet and displays DNA hypomethylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zock PL, Blom WAM, Nettleton JA, Hornstra G. Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Curr Cardiol Rep. 2016;18:111.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chowdhury R, Warnakula S, Kunutsor S, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann Intern Med. 2014;160:398–406.

    Article  PubMed  Google Scholar 

  61. de Souza RJ, Mente A, Maroleanu A, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Harcombe Z, Baker JS, Cooper SM, Davies B, Sculthorpe N, DiNicolantonio JJ, et al. Evidence from randomised controlled trials did not support the introduction of dietary fat guidelines in 1977 and 1983: a systematic review and meta-analysis. Open Hear. 2015;2:e000196.

    Article  Google Scholar 

  63. Ramsden CE, Zamora D, Majchrzak-Hong S, Faurot KR, Broste SK, Frantz RP, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968–73). BMJ. 2016;353:i1246.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Praagman J, Beulens JW, Alssema M, Zock PL, Wanders AJ, Sluijs I, et al. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. Am J Clin Nutr. 2016;103:356–65.

    Article  PubMed  Google Scholar 

  65. Hu FB, Stampfer MJ, Manson JE, Ascherio A, Colditz GA, Speizer FE, et al. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am J Clin Nutr. 1999;70:1001–8.

    CAS  PubMed  Google Scholar 

  66. Flores-Sierra J, Arredondo-Guerrero M, Cervantes-Paz B, Rodríguez-Ríos D, Alvarado-Caudillo Y, Nielsen FC, et al. The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis. 2016;15:75.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

    Article  PubMed  Google Scholar 

  68. Hall E, Volkov P, Dayeh T, Bacos K, Rönn T, Nitert MD, et al. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 2014;12:103.

    Article  PubMed  PubMed Central  Google Scholar 

  69. • Silva-Martínez GA, Rodríguez-Ríos D, Alvarado-Caudillo Y, et al. Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics. 2016;11:321–34. An analysis of FA-specific effects on beta-oxidation-dependent DNA methylation.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Aslibekyan S, Wiener HW, Havel PJ, Stanhope KL, O’Brien DM, Hopkins SE, et al. DNA methylation patterns are associated with n-3 fatty acid intake in Yup’ik people. J Nutr. 2014; doi:10.3945/jn.113.187203.

  71. Voisin S, Almén MS, Moschonis G, Chrousos GP, Manios Y, Schiöth HB. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet. 2015;23:654–62.

    Article  CAS  PubMed  Google Scholar 

  72. • de la Rocha C, Pérez-Mojica JE, Zenteno-De León S, et al. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep. 2016;6:25867. Details BMI-dependant associations between FA content and DNA methylation in metabolically healthy individuals.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Marchlewicz EH, Dolinoy DC, Tang L, et al. Lipid metabolism is associated with developmental epigenetic programming. Sci Rep. 2016;6:34857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tremblay BL, Guénard F, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin Epigenetics. 2017;9:43.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105:991–1000.

    Article  CAS  PubMed  Google Scholar 

  76. • Ollikainen M, Ismail K, Gervin K, et al. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics. 2015;7:39. Points to an association between fatty liver disease and blood methylation profiles in twins discordant for BMI and fatty liver.

    Article  PubMed  PubMed Central  Google Scholar 

  77. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977;60:265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Kirchner H, Sinha I, Gao H, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab. 2016;5:171–83. This study shows that hypomethylation is a characteristic of obese individuals before or at an early stage in the development of type 2 diabetes and shows that hypomethylation is associated with upregulation of glycolysis and de novo lipogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Erlinge D. Near-infrared spectroscopy for intracoronary detection of lipid-rich plaques to understand atherosclerotic plaque biology in man and guide clinical therapy. J Intern Med. 2015;278:110–25.

    Article  CAS  PubMed  Google Scholar 

  80. • Kolovou G, Kolovou V, Mavrogeni S. Lipidomics in vascular health: current perspectives. Vasc Health Risk Manag. 2015;11:333–42. A comprehensive view of the relevance of lipidomics for cardiovascular disease research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. • Ménégaut L, Masson D, Abello N, et al. Specific enrichment of 2-arachidonoyl-lysophosphatidylcholine in carotid atheroma plaque from type 2 diabetic patients. Atherosclerosis. 2016;251:339–47. A description of the atheroma lipidome.

    Article  PubMed  Google Scholar 

  82. Bojic LA, McLaren DG, Shah V, Previs SF, Johns DG, Castro-Perez JM. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits. Int J Mol Sci. 2014;15:23283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  83. •• Powell D, Gay J, Smith M, et al. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque. Diabetes Metab Syndr Obes Targets Ther. 2016;9:185. By genetic manipulation, the work demonstrates the metabolic effects of the alteration of FA pool composition.

    Article  Google Scholar 

  84. Varin A, Thomas C, Ishibashi M, et al. Liver X receptor activation promotes polyunsaturated fatty acid synthesis in macrophages: relevance in the context of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:1357–65.

    Article  CAS  PubMed  Google Scholar 

  85. Yang Z-H, Gordon SM, Sviridov D, Wang S, Danner RL, Pryor M, et al. Dietary supplementation with long-chain monounsaturated fatty acid isomers decreases atherosclerosis and alters lipoprotein proteomes in LDLr −/− mice. Atherosclerosis. 2017;262:31–8.

    Article  CAS  PubMed  Google Scholar 

  86. Kamalakkannan S, Tirupathi Pichiah P, Kalaiselvi S, Arunachalam S, Achiraman S. Emu oil decreases atherogenic plaque formation in cafeteria diet-induced obese rats. J Sci Food Agric. 2016;96:3063–8.

    Article  CAS  PubMed  Google Scholar 

  87. Degirolamo C, Shelness GS, Rudel LL. LDL cholesteryl oleate as a predictor for atherosclerosis: evidence from human and animal studies on dietary fat. J Lipid Res. 2008;50:S434–9.

    Article  PubMed  Google Scholar 

  88. Kim J, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. • Yu EP, Bennett MR. The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radic Biol Med. 2016;100:223–30. Describes relevant advances in the field of mitochondrial biology and atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  90. • Yu J-W, Lee M-S. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 2016;39:1503–18. Gathers up-to-date information on mitochondria-inflammasome functional interactions.

    Article  CAS  PubMed  Google Scholar 

  91. •• Dekkers KF, van Iterson M, Slieker RC, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17:138. A milestone that helps understanding the fundamental relationships between lipids and the DNA methylome.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Irvin MR, Zhi D, Joehanes R, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 2014;130:565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rangel-Salazar R, Wickström-Lindholm M, Aguilar-Salinas CA, et al. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages. BMC Genomics. 2011;12:582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. • Vorkas PA, Shalhoub J, Lewis MR, Spagou K, Want EJ, Nicholson JK, et al. Metabolic phenotypes of carotid atherosclerotic plaques relate to stroke risk: an exploratory study. Eur J Vasc Endovasc Surg. 2016;52:5–10. An important description of metabolic markers of the carotid atheroma.

    Article  CAS  PubMed  Google Scholar 

  95. Garbin U, Baggio E, Stranieri C, et al. Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques: a role for oxidized polyunsaturated fatty acids? Cardiovasc Res. 2013;97:125–33.

    Article  CAS  PubMed  Google Scholar 

  96. Bisgaard LS, Mogensen CK, Rosendahl A, Cucak H, Nielsen LB, Rasmussen SE, et al. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression—implications for atherosclerosis research. Sci Rep. 2016;6:35234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. • Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67. A must-read review by leading inflammation researchers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Castillo-Díaz SA, Garay-Sevilla ME, Hernández-González MA, Solís-Martínez MO, Zaina S. Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med. 2010;26:691–700.

    PubMed  Google Scholar 

  99. Aavik E, Lumivuori H, Leppänen O, et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J. 2014;36:993–1000.

    Article  PubMed  Google Scholar 

  100. Sharma P, Kumar J, Garg G, Kumar A, Patowary A, Karthikeyan G, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27:357–65.

    Article  CAS  PubMed  Google Scholar 

  101. Volkmar M, Dedeurwaerder S, Cunha DA, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012;31:1405–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GL and SZ have received funding from the Kellogg’s Institute for Nutrition and Health, “Research Projects in Nutrition 2016” grant no. 100. Due to the extent of available literature and the multidisciplinary nature of this review, readers are in some instances referred to review articles. We apologize to all authors whose work was not directly cited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvio Zaina or Gertrud Lund.

Ethics declarations

Conflict of Interest

Gertrud Lund and Silvio Zaina each declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Genetics and Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaina, S., Lund, G. Connecting the Dots Between Fatty Acids, Mitochondrial Function, and DNA Methylation in Atherosclerosis. Curr Atheroscler Rep 19, 36 (2017). https://doi.org/10.1007/s11883-017-0673-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-017-0673-y

Keywords

Navigation