Skip to main content

Advertisement

Log in

Sphingosine-1-Phosphate Receptor Subtype 2 Signaling in Endothelial Senescence-Associated Functional Impairments and Inflammation

  • Vascular Biology (T Hla, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Endothelial inflammation is an important risk factor in the initiation and development of vascular disease. Therefore, signaling cascades and patho-physiological outcomes of endothelial inflammation are important questions in vascular biology. Recent studies suggest that sphingosine-1-phosphate receptor subtype 2 (S1PR2) signaling in endothelial cells (ECs) play a critical role in endothelial inflammation. For example, ECs present in atherosclerotic plaques exhibit senescence phenotype. Levels of S1PR2 are markedly increased in cultured senescent ECs and in lesion regions of atherosclerotic endothelium. Also, inflammatory cytokines and mechanical flow stress profoundly increase S1PR2 levels in ECs. Inhibition of endothelial S1PR2 signaling diminishes endothelial senescence-associated functional impairments and atherogenic stimuli-induced endothelial activation. In contrast, activation of endothelial S1PR2 stimulates the production of pro-inflammatory chemokines/cytokines and lipid mediators in ECs. In this article, we will review signaling and functions of sphingosine-1-phosphate (S1P) receptors in endothelial biology, with particular focus on endothelial S1PR2 signaling-mediated endothelial inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Spiegel S, Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000;476(1–2):55–7.

    Article  CAS  PubMed  Google Scholar 

  2. Moolenaar WH, van Meeteren LA, Giepmans BN. The ins and outs of lysophosphatidic acid signaling. Bioessays. 2004;26(8):870–81. doi:10.1002/bies.20081.

    Article  CAS  PubMed  Google Scholar 

  3. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, et al. Sphingosine-1-phosphate as a ligand for the G protein coupled receptor EDG-1. Science. 1998;279(5356):1552–5.

    Article  CAS  PubMed  Google Scholar 

  4. An S, Bleu T, Huang W, Hallmark OG, Coughlin SR, Goetzl EJ. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 1997;417(3):279–82.

    Article  CAS  PubMed  Google Scholar 

  5. Zondag GC, Postma FR, Etten IV, Verlaan I, Moolenaar WH. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998;330(2):605–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296(5566):346–9. doi:10.1126/science.1070238.

    Article  CAS  PubMed  Google Scholar 

  7. Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol. 1999;65(3):341–4.

    CAS  PubMed  Google Scholar 

  8. Moolenaar WH. Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res. 1999;253(1):230–8.

    Article  CAS  PubMed  Google Scholar 

  9. Igarashi Y, Yatomi Y. Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim Pol. 1998;45(2):299–309.

    CAS  PubMed  Google Scholar 

  10. Hla T, Lee MJ, Ancellin N, Liu CH, Thangada S, Thompson BD, et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem Pharmacol. 1999;58(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  11. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 2009;325(5945):1254–7. doi:10.1126/science.1176709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 2010;465(7301):1084–8. doi:10.1038/nature09128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. An SZ, Goetz EJ, Lee HY. Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem. 1998;147–57.

  14. Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, et al. International union of pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev. 2002;54(2):265–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99(3):301–12.

    Article  CAS  PubMed  Google Scholar 

  16. Estrada R, Zeng Q, Lu H, Sarojini H, Lee JF, Mathis SP, et al. Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in senescent endothelial cells. J Biol Chem. 2008;283(44):30363–75. doi:10.1074/jbc.M804392200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Eskan MA, Rose BG, Benakanakere MR, Lee MJ, Kinane DF. Sphingosine 1-phosphate 1 and TLR4 mediate IFN-beta expression in human gingival epithelial cells. J Immunol. 2008;180(3):1818–25.

    Article  CAS  PubMed  Google Scholar 

  18. Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, et al. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol. 2012;40(5):1619–26. doi:10.3892/ijo.2012.1379.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang W, Zhao J, Lee JF, Gartung A, Jawadi H, Lambiv WL, et al. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. J Biol Chem. 2013;288(45):32126–37. doi:10.1074/jbc.M113.495218. This study characterized a novel ETS-1/CD44 pathway in S1P-stimulated chemotaxis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell. 2001;8(3):693–704.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest. 2000;106(8):951–61. doi:10.1172/jci10905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest. 2001;108(5):689–701. doi:10.1172/jci12450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang W, An J, Jawadi H, Siow DL, Lee JF, Zhao J, et al. Sphingosine-1-phosphate receptor-2 mediated NFkappaB activation contributes to tumor necrosis factor-alpha induced VCAM-1 and ICAM-1 expression in endothelial cells. Prostaglandins Other Lipid Mediat. 2013;106:62–71. doi:10.1016/j.prostaglandins.2013.06.001. S1PR2 plays a key role in endothelial inflammation.

    Article  CAS  PubMed  Google Scholar 

  24. Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998;142(1):229–40.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lee MJ, Evans M, Hla T. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem. 1996;271(19):11272–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem. 1990;265(16):9308–13.

    CAS  PubMed  Google Scholar 

  27. Liu F, Verin AD, Wang P, Day R, Wersto RP, Chrest FJ, et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am J Respir Cell Mol Biol. 2001;24(6):711–9.

    Article  CAS  PubMed  Google Scholar 

  28. Paik JH, Chae S, Lee MJ, Thangada S, Hla T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem. 2001;276(15):11830–7. doi:10.1074/jbc.M009422200.

    Article  CAS  PubMed  Google Scholar 

  29. Morales-Ruiz M, Lee MJ, Zollner S, Gratton JP, Scotland R, Shiojima I, et al. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem. 2001;276(22):19672–7. doi:10.1074/jbc.M009993200.

    Article  CAS  PubMed  Google Scholar 

  30. Lee JF, Zeng Q, Ozaki H, Wang L, Hand AR, Hla T, et al. Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem. 2006;281(39):29190–200. doi:10.1074/jbc.M604310200.

    Article  CAS  PubMed  Google Scholar 

  31. Lee JF, Ozaki H, Zhan X, Wang E, Hla T, Lee MJ. Sphingosine-1-phosphate signaling regulates lamellipodia localization of cortactin complexes in endothelial cells. Histochem Cell Biol. 2006;126(3):297–304. doi:10.1007/s00418-006-0143-z.

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Lee JF, Lin CY, Lee MJ. Rho GTPases mediated integrin alpha v beta 3 activation in sphingosine-1-phosphate stimulated chemotaxis of endothelial cells. Histochem Cell Biol. 2008;129(5):579–88. doi:10.1007/s00418-008-0389-8.

    Article  CAS  PubMed  Google Scholar 

  33. Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K, Blaho V, et al. Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice. J Clin Invest. 2011;121(6):2290–300. doi:10.1172/jci45403. This study used an animal model to show the role of S1PR1 in maintaining vascular permeability.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lee JF, Gordon S, Estrada R, Wang L, Siow DL, Wattenberg BW, et al. Balance of S1P1 and S1P2 signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. Am J Physiol Heart Circ Physiol. 2009;296(1):H33–42. doi:10.1152/ajpheart.00097.2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol. 2003;23(5):1534–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol. 2007;27(6):1312–8. doi:10.1161/atvbaha.107.143735.

    Article  CAS  PubMed  Google Scholar 

  37. Sikora E, Bielak-Zmijewska A, Mosieniak G. Cellular senescence in ageing. Curr Vasc Pharmacol: Age-Related Disease and Longevity; 2013.

    Google Scholar 

  38. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541–4.

    Article  CAS  PubMed  Google Scholar 

  39. Minamino T, Miyauchi H, Yoshida T, Tateno K, Kunieda T, Komuro I. Vascular cell senescence and vascular aging. J Mol Cell Cardiol. 2004;36(2):175–83. doi:10.1016/j.yjmcc.2003.11.010.

    Article  CAS  PubMed  Google Scholar 

  40. Bai B, Liang Y, Xu C, Lee MY, Xu A, Wu D, et al. Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation. 2012;126(6):729–40. doi:10.1161/circulationaha.112.118778. This study identified SIRT1 being a target of CDK5, and characterized the critical role of CDK5/SIRT1 signaling axis in endothelial senescence and atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  41. VASILE E, TOMITA Y, BROWN LF, KOCHER O, DVORAK HF. Differential expression of thymosin β-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J. 2001;15(2):458–66. doi:10.1096/fj.00-0051com.

    Article  CAS  PubMed  Google Scholar 

  42. Skoura A, Michaud J, Im DS, Thangada S, Xiong Y, Smith JD, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(1):81–5. doi:10.1161/atvbaha.110.213496. This study demonstrated that S1PR2 signaling in myeloid cells plays a key role in atherosclerosis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol. 2001;281(3):L529–33.

    CAS  PubMed  Google Scholar 

  44. Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38(10):1949–71.

    Article  PubMed  Google Scholar 

  45. Estrada R, Giridharan GA, Nguyen M-D, Roussel TJ, Shakeri M, Parichehreh V. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem. 2011. doi:10.1021/ac2002998. null-null.

    PubMed  Google Scholar 

  46. Estrada R, Giridharan G, Prabhu SD, Sethu P. Endothelial cell culture model of carotid artery atherosclerosis. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:186–9.

    PubMed  Google Scholar 

  47. Estrada R, Giridharan GA, Nguyen M-D, Prabhu SD, Sethu P. Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions. Biomicrofluidics. 2011;5(3):032006–11.

    Article  PubMed Central  Google Scholar 

  48. Cantwell CA, Sterneck E, Johnson PF. Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol Cell Biol. 1998;18(4):2108–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014;22(3):147–51. doi:10.1097/crd.0000000000000021.

    Article  PubMed  Google Scholar 

  50. Ogura H, Arima Y, Kamimura D, Murakami M. The gateway theory: how regional neural activation creates a gateway for immune cells via an inflammation amplifier. Biomed J. 2013;36(6):269–73. doi:10.4103/2319-4170.113187.

    Article  PubMed  Google Scholar 

  51. Dessi M, Noce A, Bertucci P, di Villahermosa MS, Zenobi R, Castagnola V, et al. Atherosclerosis, dyslipidemia, and inflammation: the significant role of polyunsaturated fatty acids. ISRN Inflamm. 2013;2013:191823. doi:10.1155/2013/191823.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Muradashvili N, Khundmiri SJ, Tyagi R, Gartung A, Dean WL, Lee MJ, et al. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Am J Physiol Cell Physiol. 2014;307(2):C169–79. doi:10.1152/ajpcell.00305.2013. This study demonstrated a novel role of sphingolipids in fibrinogen-mediated caveolar transcytosis, leading to increase cerebrovascular permeability.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, et al. Adipocyte lipolysis stimulated interleukin-6 production requires sphingosine kinase 1 activity. J Biol Chem. 2014. doi:10.1074/jbc.M114.601096. Sep 24. pii: jbc.M114.601096. [Epub ahead of print].

    Google Scholar 

  54. Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985;57(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  55. Wattenberg BW. Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem. 2010;1(12):362–8. doi:10.4331/wjbc.v1.i12.362.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol. 2012;163(1):26–36. doi:10.1016/j.cbpb.2012.05.006.

    Article  PubMed  Google Scholar 

  57. Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta. 2003;1632(1–3):16–30.

    Article  CAS  PubMed  Google Scholar 

  58. Linn SC, Kim HS, Keane EM, Andras LM, Wang E, Merrill Jr AH. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 2001;29(Pt 6):831–5.

    Article  CAS  PubMed  Google Scholar 

  59. Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature. 2008;451(7181):904–13. doi:10.1038/nature06796.

    Article  CAS  PubMed  Google Scholar 

  60. Lipid modification—cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease—quick reference guide. National Institute for Health and Clinical Excellence May 2008, reissued March 2010.

  61. Taylor F, Ward K, Moore TH, Burke M, Davey Smith G, Casas JP, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011;1, CD004816. doi:10.1002/14651858.CD004816.pub4. Online.

    PubMed  Google Scholar 

  62. Naci H, Brugts J, Ades T. Comparative tolerability and harms of individual statins: a study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcome. 2013;6(4):390–9. doi:10.1161/circoutcomes.111.000071.

    Article  Google Scholar 

  63. Abd TT, Jacobson TA. Statin-induced myopathy: a review and update. Expert Opin Drug Saf. 2011;10(3):373–87. doi:10.1517/14740338.2011.540568.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jiawei Zhao, Dante Garcia, Allison Gartung, and Menq-Jer Lee declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menq-Jer Lee.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Garcia, D., Gartung, A. et al. Sphingosine-1-Phosphate Receptor Subtype 2 Signaling in Endothelial Senescence-Associated Functional Impairments and Inflammation. Curr Atheroscler Rep 17, 26 (2015). https://doi.org/10.1007/s11883-015-0504-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0504-y

Keywords

Navigation