Skip to main content

Advertisement

Log in

Shared Genetic Aetiology of Coronary Artery Disease and Atherosclerotic Stroke—2015

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

In the last years, genome-wide association studies have allowed to identify multiple genetic variants associated with atherosclerosis. In this review, we highlight the identification of genomic variants associated with coronary artery disease and myocardial infarction as well as large-vessel stroke. We will focus on genetic variants that displayed overlap for these atherosclerotic diseases. Current research is focusing on the identification of the functional mechanisms underlying these associations. As frequent variants are often only associated with small increases in risk, the search for the identification of rare variants with large increases in risk is ongoing. Whole-exome sequencing recently revealed rare variants dramatically increasing cardiovascular risk. Taken together, the developments of the past few years light the vision of improved prevention and therapy of coronary artery disease and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2013;380(9859):2095–128. doi:10.1016/S0140-6736(12)61728-0.

    Article  Google Scholar 

  2. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet. 2004;364(9438):937–52. doi:10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  3. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J. 1990;120(4):963–9.

    Article  CAS  PubMed  Google Scholar 

  4. Brass LM, Isaacsohn JL, Merikangas KR, Robinette CD. A study of twins and stroke. Stroke. 1992;23(2):221–3.

    Article  CAS  PubMed  Google Scholar 

  5. Murabito JM, Pencina MJ, Nam B-H, et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA. 2005;294(24):3117–23. doi:10.1001/jama.294.24.3117.

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee A, Lim CCS, Silver LE, Welch SJV, Banning AP, Rothwell PM. Familial history of stroke is associated with acute coronary syndromes in women. Circ: Cardiovasc Genet. 2011;4(1):9–15. doi:10.1161/CIRCGENETICS.110.957688.

    Google Scholar 

  7. Mayer B, Erdmann J, Schunkert H. Genetics and heritability of coronary artery disease and myocardial infarction. Clin Res Cardiol. 2007;96(1):1–7. doi:10.1007/s00392-006-0447-y.

    Article  PubMed  Google Scholar 

  8. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76. doi:10.1056/NEJMra0905980.

    Article  CAS  PubMed  Google Scholar 

  9. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53. doi:10.1056/NEJMoa072366.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91. doi:10.1126/science.1142447.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3. doi:10.1126/science.1142842.

    Article  CAS  PubMed  Google Scholar 

  12. Gschwendtner A, Bevan S, Cole JW, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65(5):531–9. doi:10.1002/ana.21590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012;11(11):951–62. doi:10.1016/S1474-4422(12)70234-X.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24. doi:10.1038/ng.72.

    Article  CAS  PubMed  Google Scholar 

  15. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8. doi:10.1038/ng.784.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33. doi:10.1038/ng.2480. This study was the thus far largest meta-analysis of genome-wide association studies in coronary artery disease.

    Google Scholar 

  17. Dichgans M, Malik R, König IR, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45(1):24–36. doi:10.1161/STROKEAHA.113.002707. This study investigated the shared genetics of coronary artery disease and stroke.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41. doi:10.1038/ng.327.

    Article  PubMed Central  Google Scholar 

  19. The IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. Visscher PM, ed. PLoS Genet. 2011;7(9):e1002260. doi:10.1371/journal.pgen.1002260.t001

  20. Erdmann J, Grosshennig A, Braund PS, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41(3):280–2. doi:10.1038/ng.307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Holliday EG, Maguire JM, Evans T-J, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012;44(10):1147–51. doi:10.1038/ng.2397.

    Article  CAS  PubMed  Google Scholar 

  22. Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448(7151):353–7. doi:10.1038/nature06007.

    Article  CAS  PubMed  Google Scholar 

  23. Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64(4):402–9. doi:10.1002/ana.21480.

    Article  PubMed  Google Scholar 

  24. Lemmens R, Buysschaert I, Geelen V, et al. The association of the 4q25 susceptibility variant for atrial fibrillation with stroke is limited to stroke of cardioembolic etiology. Stroke. 2010;41(9):1850–7. doi:10.1161/STROKEAHA.110.587980.

    Article  PubMed  Google Scholar 

  25. Lubitz SA, Sinner MF, Lunetta KL, et al. Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation. 2010;122(10):976–84. doi:10.1161/CIRCULATIONAHA.109.886440.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang F, Xu C-Q, He Q, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet. 2011;43(4):345–9. doi:10.1038/ng.783.

    Article  CAS  PubMed  Google Scholar 

  27. Tregouet D-A, König IR, Erdmann J, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41(3):283–5. doi:10.1038/ng.314.

    Article  CAS  PubMed  Google Scholar 

  28. International Stroke Genetics Consortium ISGC, Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012;44(3):328–33. doi:10.1038/ng.1081.

    Article  Google Scholar 

  29. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet. 2011;43(4):339–44. doi:10.1038/ng.782.

    Article  Google Scholar 

  30. WTCC Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. doi:10.1038/nature05911.

    Article  Google Scholar 

  31. Reilly MP, Li M, He J, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383–92. doi:10.1016/S0140-6736(10)61996-4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wu O, Bayoumi N, Vickers MA, Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. J Thromb Haemost. 2008;6(1):62–9. doi:10.1111/j.1538-7836.2007.02818.x.

    Article  CAS  PubMed  Google Scholar 

  33. Traylor M, Mäkelä K-M, Kilarski LL, et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet. 2014;10(7):e1004469. doi:10.1371/journal.pgen.1004469.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gudbjartsson DF, Bjornsdottir US, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41(3):342–7. doi:10.1038/ng.323.

    Article  CAS  PubMed  Google Scholar 

  35. Kilarski LL, Achterberg S, Devan WJ, et al. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology. 2014;83(8):678–85. doi:10.1212/WNL.0000000000000707.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rannikmäe K, Davies G, Thomson PA, et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology. 2015;(accepted for publication).

  37. Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41(8):876–8. doi:10.1038/ng.417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. N Engl J Med. 2009;360(17):1718–28. doi:10.1056/NEJMoa0900094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Falcone GJ, Malik R, Dichgans M, Rosand J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 2014;13(4):405–18. doi:10.1016/S1474-4422(14)70029-8.

    Article  PubMed  Google Scholar 

  40. Williams FMK, Carter AM, Hysi PG, et al. Ischemic stroke is associated with the ABO locus: the EuroCLOT study. Ann Neurol. 2013;73(1):16–31. doi:10.1002/ana.23838.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Nikpay M, Goel A, Won H-H, CARDIoGRAMplusC4D Consortium. Identification of novel CAD genetic loci by 1000 genomes-based imputation and a non-additive discovery screen. Circulation. 2014;130(22, Suppl 2):A16274.

    Google Scholar 

  42. Grove ML, Yu B, Cochran BJ, et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One. 2013;8(7):e68095. doi:10.1371/journal.pone.0068095.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Voight BF, Kang HM, Ding J, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8(8):e1002793. doi:10.1371/journal.pgen.1002793.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13. doi:10.1038/nature09270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7. doi:10.1038/ng.381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. doi:10.1038/nature10405.

    Article  Google Scholar 

  47. Wain LV, Verwoert GC, O’reilly PF, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43(10):1005–11. doi:10.1038/ng.922.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Soranzo N, Spector TD, Mangino M, et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet. 2009;41(11):1182–90. doi:10.1038/ng.467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Takizawa H, Nishimura S, Takayama N, et al. Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest. 2010;120(1):179–90. doi:10.1172/JCI39503DS1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Azghandi S, Prell C, van der Laan SW, et al. Deficiency of the stroke relevant HDAC9 gene attenuates atherosclerosis in accord with allele-specific effects at 7p21.1. Stroke. 2014. doi:10.1161/STROKEAHA.114.007213. This study investigated the impact of Hdac9, a gene associated with both CAD and stroke, on atherosclerosis in mice with proatherogenic background.

    PubMed  Google Scholar 

  51. Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–97. doi:10.1038/ng.75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9. doi:10.1038/nature09266. This study elucidated the mechanism involving frequent variants at the SORT1 locus in LDL cholesterol metabolism.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kjolby M, Andersen OM, Breiderhoff T, et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12(3):213–23. doi:10.1016/j.cmet.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  54. Diemert P, Heeren J, Aherrahrou Z, et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis. 2010;208(1):183–9. doi:10.1016/j.atherosclerosis.2009.06.034.

    Article  Google Scholar 

  55. Markus HS, Mäkelä K-M, Bevan S, et al. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke. 2013;44(5):1220–5. doi:10.1161/STROKEAHA.111.000217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Cao Q, Rong S, Repa JJ, St Clair R, Parks JS, Mishra N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34(9):1871–9. doi:10.1161/ATVBAHA.114.303393.

    Article  CAS  PubMed  Google Scholar 

  57. Liu C-J, Kong W, Ilalov K, et al. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J. 2006;20(7):988–90. doi:10.1096/fj.05-3877fje.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Wang L, Zheng J, Bai X, et al. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009;104(5):688–98. doi:10.1161/CIRCRESAHA.108.188425.

    Article  CAS  PubMed  Google Scholar 

  59. Wang L, Zheng J, Du Y, et al. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ Res. 2010;106(3):514–25. doi:10.1161/CIRCRESAHA.109.202762.

    Article  CAS  PubMed  Google Scholar 

  60. Pu X, Xiao Q, Kiechl S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 2013;92(3):366–74. doi:10.1016/j.ajhg.2013.01.012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kessler T, Zhang L, Liu Z, et al. ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling via cleavage of thrombospondin-1. Circulation. 2015 in press. This study investigates the effect of Adamts7 deficiency in a mouse model showing that Adamts7 promotes neointima formation secondary to vascular injury due to retarded re-endothelialisation.

  62. Erdmann J, Stark K, Esslinger UB, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature. 2013;504(7480):432–6. doi:10.1038/nature12722.

    Article  CAS  PubMed  Google Scholar 

  63. Hanafy KA, Martin E, Murad F. CCTeta, a novel soluble guanylyl cyclase-interacting protein. J Biol Chem. 2004;279(45):46946–53. doi:10.1074/jbc.M404134200.

    Article  CAS  PubMed  Google Scholar 

  64. Myocardial Infarction Genetics Consortium Investigators, Stitziel NO, Won H-H, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371(22):2072–82. doi:10.1056/NEJMoa1405386.

    Article  Google Scholar 

  65. Do R, Stitziel NO, Won H-H, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2014. doi:10.1038/nature13917.

    PubMed  Google Scholar 

  66. The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31. doi:10.1056/NEJMoa1307095.

    Article  Google Scholar 

  67. Investigators II. IMPROVE-IT Trial: a comparison of ezetimibe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes after acute coronary syndromes. Circulation. 2014;130(22, Suppl2):2105–26.

    Google Scholar 

  68. Abifadel M, Varret M, Rabès J-P, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. doi:10.1038/ng1161.

    Article  CAS  PubMed  Google Scholar 

  69. Brautbar A, Ballantyne CM. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol. 2011;8(5):253–65. doi:10.1038/nrcardio.2011.2.

    Article  CAS  PubMed  Google Scholar 

  70. Cameron J, Holla ØL, Ranheim T, Kulseth MA, Berge KE, Leren TP. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet. 2006;15(9):1551–8. doi:10.1093/hmg/ddl077.

    Article  CAS  PubMed  Google Scholar 

  71. Stein EA, Giugliano RP, Koren MJ, et al. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. 2014;35(33):2249–59. doi:10.1093/eurheartj/ehu085.

    Article  CAS  PubMed  Google Scholar 

  72. Koren MJ, Giugliano RP, Raal FJ, et al. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation. 2014;129(2):234–43. doi:10.1161/CIRCULATIONAHA.113.007012.

    Article  CAS  PubMed  Google Scholar 

  73. Kessler T, Schunkert H. Clinical validation of genetic markers for improved risk estimation. Eur J Prev Cardiol. 2012;19(2 Suppl):25–32. doi:10.1177/2047487312448993.

    Article  PubMed  Google Scholar 

  74. Hughes M, Saarela O, Stritzke J, et al. Genetic markers enhance coronary risk prediction in men: The MORGAM Prospective Cohorts. Schäfer A, ed. PLoS ONE. 2012;7(7):e40922. doi:10.1371/journal.pone.0040922.t005.

  75. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. doi:10.1126/science.1222794.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Thorsten Kessler, Jeanette Erdmann, Martin Dichgans, and Heribert Schunkert do not have any conflicts of interest in connection with this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

This work has been supported by the German Federal Ministry of Education and Research (BMBF) in the context of the e:Med programme (e:AtheroSysMed, to Jeanette Erdmann, Martin Dichgans, and Heribert Schunkert), the FP7 European Union project CVgenes@target (261123, to Jeanette Erdmann, Martin Dichgans, and Heribert Schunkert), and the Foundation Leducq (CADgenomics: Understanding Coronary Artery Disease Genes, 12CVD02, to Jeanette Erdmann and Heribert Schunkert).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heribert Schunkert.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessler, T., Erdmann, J., Dichgans, M. et al. Shared Genetic Aetiology of Coronary Artery Disease and Atherosclerotic Stroke—2015. Curr Atheroscler Rep 17, 14 (2015). https://doi.org/10.1007/s11883-015-0498-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0498-5

Keywords

Navigation