Skip to main content
Log in

Magnetic resonance imaging and computed tomography in assessment of atherosclerotic plaque

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The two most promising noninvasive imaging modalities for the study of atherosclerosis are magnetic resonance imaging (MRI) and computed tomography (CT). Both have been shown to be capable of imaging vessel wall structures and differentiating various stages of atherosclerotic wall changes. MRI has been applied in various in vivo human studies to image atherosclerotic plaques in coronary arteries, carotid arteries, and aorta. The latest generation of multidetector row computed tomography (MDCT) systems allows for the noninvasive characterization of different plaque components in various vascular structures. MDCT allows evaluation of the whole arterial vasculature. In addition, MDCT has the ability to visualize the vessel wall and to give a quantitative measurement of calcified and noncalcified plaque. Using either technique, the repeatable, noninvasive study of atherosclerotic disease during its natural history and after therapeutic intervention will enhance our understanding of disease progression and regression. MDCT and MRI, therefore, may help in selecting appropriate treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Fuster V, Badimon L, Badimon JJ, Chesebro JH: The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992, 326:242–250.

    Article  PubMed  CAS  Google Scholar 

  2. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992, 326:310–318.

    Article  PubMed  CAS  Google Scholar 

  3. Virmani R, Kolodgie FD, Burke AP, et al.: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20:1262–1275.

    PubMed  CAS  Google Scholar 

  4. Pasterkamp G, Falk E, Woutman H, Borst C: Techniques characterizing the coronary atherosclerotic plaque: influence on clinical decision making? J Am Coll Cardiol 2000, 36:13–21.

    Article  PubMed  CAS  Google Scholar 

  5. Fayad ZA, Aguinaldo JG, Graham PB, et al.: Detection of arterial thrombi in vivo by MRI using a fibrin-targeted contrast agent. Circulation 2002, 106:II-435.

    Google Scholar 

  6. Fayad ZA, Fuster V: Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001, 89:305–316.

    PubMed  CAS  Google Scholar 

  7. Budoff MJ, Achenbach S, Duerinckx A: Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. J Am Coll Cardiol 2003, 42:1867–1878.

    Article  PubMed  Google Scholar 

  8. Fayad ZA, Fuster V, Fallon JT, et al.: Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000, 102:506–510.

    PubMed  CAS  Google Scholar 

  9. Yuan C, Beach KW, Smith LH Jr, Hatsukami TS: Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation 1998, 98:2666–2671.

    PubMed  CAS  Google Scholar 

  10. Fayad ZA, Nahar T, Fallon JT, et al.: In vivo MR evaluation of atherosclerotic plaques in the human thoracic corta: a comparison with TEE. Circulation 2000, 101:2503–2509.

    PubMed  CAS  Google Scholar 

  11. Becker CR: Assessment of coronary arteries with CT. Radiol Clin North Am 2002, 40:773–782.

    Article  PubMed  Google Scholar 

  12. Oliver TB, Lammie GA, Wright AR, et al.: Atherosclerotic plaque at the carotid bifurcation: CT angiographic appearance with histopathologic correlation. Am J Neuroradiol 1999, 20:897–901.

    PubMed  CAS  Google Scholar 

  13. Tunick PA, Krinsky GA, Lee VS, Kronzon I: Diagnostic imaging of thoracic aortic atherosclerosis. Am J Roentgenol 2000, 174:1119–1125.

    CAS  Google Scholar 

  14. Becker CR, Schoepf UJ, Reiser MF: Coronary artery calcium scoring: medicine and politics. Eur Radiol 2003, 13:445–447.

    Article  PubMed  Google Scholar 

  15. Nikolaou K, Schoenberg SO, Nittka M, et al.: Magnetic resonance imaging in the diagnosis of pulmonary arterial hypertension: high resolution angiography and fast perfusion imaging using intelligent parallel acquisition techniques (IPAT). Radiology 2002, 225:473.

    Google Scholar 

  16. Toussaint JF, LaMuraglia GM, Southern JF, et al.: Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996, 94:932–938.

    PubMed  CAS  Google Scholar 

  17. Yuan C, Mitsumori LM, Beach KW, Maravilla KR: Carotid atherosclerotic plaque: noninvasive mr characterization and identification of vulnerable lesions. Radiology 2001, 221:285–299.

    Article  PubMed  CAS  Google Scholar 

  18. Hatsukami TS, Ross R, Polissar NL, Yuan C: Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque In vivo with high-resolution magnetic resonance imaging. Circulation 2000, 102:959–964.

    PubMed  CAS  Google Scholar 

  19. Tanenbaum SR, Kondos GT, Veselik KE, et al.: Detection of calcific deposits in coronary arteries by ultrafast computed tomography and correlation with angiography. Am J Cardiol 1989, 63:870–872.

    Article  PubMed  CAS  Google Scholar 

  20. Agatston AS, Janowitz WR, Hildner FJ, et al.: Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990, 15:827–832.

    Article  PubMed  CAS  Google Scholar 

  21. Klingenbeck-Regn K, Flohr T, Ohnesorge B, et al.: Strategies for cardiac CT imaging. Int J Cardiovasc Imaging 2002, 18:143–151.

    Article  PubMed  CAS  Google Scholar 

  22. Leber AW, Knez A, Becker C, et al.: Non-invasive intravenous coronary angiography using electron beam tomography and multislice computed tomography. Heart 2003, 89:633–639.

    Article  PubMed  CAS  Google Scholar 

  23. Achenbach S, Ropers D, Pohle K, et al.: Clinical results of minimally invasive coronary angiography using computed tomography. Cardiol Clin 2003, 21:549–559.

    Article  PubMed  Google Scholar 

  24. Achenbach S, Ulzheimer S, Baum U, et al.: Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 2000, 102:2823–2828.

    PubMed  CAS  Google Scholar 

  25. Wintersperger BJ, Herzog P, Jakobs TF, et al.: Initial experience with the clinical use of a 16 detector row CT system. Crit Rev Comput Tomogr 2002, 43:283–316.

    PubMed  Google Scholar 

  26. Becker CR, Knez A, Leber A, et al.: Angiography with multislice spiral CT. Detecting plaque, before it causes symptoms. Fortschr Med 2001, 143:30–32.

    CAS  Google Scholar 

  27. Becker CR, Knez A, Ohnesorge B, et al.: Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. Am J Roentgenol 2000, 175:423–424.

    CAS  Google Scholar 

  28. Becker CR, Jakobs TF, Aydemir S, et al.: Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. Am J Roentgenol 2000, 174:543–547.

    CAS  Google Scholar 

  29. Cademartiri F, Mollet N, Van Der Lugt A, et al.: Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. Eur Radiol 2004, 14:178–183.

    Article  PubMed  Google Scholar 

  30. Schroeder S, Kopp AF, Baumbach A, et al.: Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001, 37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  31. Nikolaou K, Becker CR, Muders M, et al.: High resolution magnetic resonance and multi-slice CT imaging of coronary artery plaques in human ex vivo coronary arteries. Radiology 2001, 221:503.

    Google Scholar 

  32. Worthley SG, Helft G, Fuster V, et al.: Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000, 101:2956–2961.

    PubMed  CAS  Google Scholar 

  33. Botnar RM, Kim WY, Bornert P, et al.: 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 2001, 46:848–854.

    Article  PubMed  CAS  Google Scholar 

  34. Kim WY, Danias PG, Stuber M, et al.: Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001, 345:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  35. Becker CR, Knez A, Jakobs TF, et al.: Detection and quantification of coronary artery calcification with electron-beam and conventional CT. Eur Radiol 1999, 9:620–624.

    Article  PubMed  CAS  Google Scholar 

  36. Breen JF, Sheedy PF 2nd, Schwartz RS, et al.: Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Radiology 1992, 185:435–439.

    PubMed  CAS  Google Scholar 

  37. Agatston AS, Janowitz WR, Kaplan G, et al.: Ultrafast computed tomography-detected coronary calcium reflects the angiographic extent of coronary arterial atherosclerosis. Am J Cardiol 1994, 74:1272–1274.

    Article  PubMed  CAS  Google Scholar 

  38. Arad Y, Sparado L, Goodman K: Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000, 36:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  39. Raggi P, Callister TQ, Cooil B, et al.: Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 2000, 101:850–855.

    PubMed  CAS  Google Scholar 

  40. Mautner GC, Mautner SL, Froehlich J, et al.: Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation [see comments]. Radiology 1994, 192:619–623.

    PubMed  CAS  Google Scholar 

  41. Achenbach S, Nomayo A, Couturier G, et al.: Relation between coronary calcium and 10-year risk scores in primary prevention patients. Am J Cardiol 2003, 92:1471–1475.

    Article  PubMed  CAS  Google Scholar 

  42. Greenland P, LaBree L, Azen SP, et al.: Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004, 291:210–215.

    Article  PubMed  CAS  Google Scholar 

  43. Nikolaou K, Sagmeister S, Knez A, et al.: Multidetector-row computed tomography of the coronary arteries: predictive value and quantitative assessment of non-calcified vessel-wall changes. Eur Radiol 2003, 13:2505–2512.

    Article  PubMed  Google Scholar 

  44. Schroeder S, Kuettner A, Kopp AF, et al.: Noninvasive evaluation of the prevalence of noncalcified atherosclerotic plaques by multi-slice detector computed tomography: results of a pilot study. Int J Cardiol 2003, 92:151–155.

    Article  PubMed  Google Scholar 

  45. Nieman K, van der Lugt A, Pattynama PM, de Feyter PJ: Noninvasive visualization of atherosclerotic plaque with electron beam and multislice spiral computed tomography. J Interv Cardiol 2003, 16:123–128.

    PubMed  Google Scholar 

  46. Becker CR, Nikolaou K, Muders M, et al.: Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 2003, 13:2094–2098.

    Article  PubMed  Google Scholar 

  47. Achenbach S, Giesler T, Ropers D, et al.: Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001, 103:2535–2538.

    PubMed  CAS  Google Scholar 

  48. Knez A, Becker CR, Leber A, et al.: Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol 2001, 88:1191–1194.

    Article  PubMed  CAS  Google Scholar 

  49. Nieman K, Rensing BJ, van Geuns RJ, et al.: Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol 2002, 89:913–918.

    Article  PubMed  Google Scholar 

  50. Vogl TJ, Abolmaali ND, Diebold T, et al.: Techniques for the detection of coronary atherosclerosis: multi- detector row CT coronary angiography. Radiology 2002, 223:212–220.

    Article  PubMed  Google Scholar 

  51. Nieman K, Cademartiri F, Lemos PA, et al.: Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002, 106:2051–2054.

    Article  PubMed  Google Scholar 

  52. Ropers D, Baum U, Pohle K, et al.: Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003, 107:664–666.

    Article  PubMed  Google Scholar 

  53. Achenbach S, Moselewski F, Ropers D, et al.: detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004, 109:14–17.

    Article  PubMed  Google Scholar 

  54. Yuan C, Mitsumori LM, Ferguson MS, et al.: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001, 104:2051–2056.

    PubMed  CAS  Google Scholar 

  55. Fayad ZA, Connick TJ, Axel L: An improved quadrature or phased-array coil for MR cardiac imaging. Magn Reson Med 1995, 34:186–193.

    Article  PubMed  CAS  Google Scholar 

  56. Yuan C, Murakami JW, Hayes CE, et al.: Phased-array magnetic resonance imaging of the carotid artery bifurcation: preliminary results in healthy volunteers and a patient with atherosclerotic disease. J Magn Reson Imaging 1995, 5:561–565.

    Article  PubMed  CAS  Google Scholar 

  57. Yuan C, Zhang SH, Polissar NL, et al.: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002, 105:181–185.

    Article  PubMed  Google Scholar 

  58. Moody AR, Allder S, Lennox G, et al.: Direct magnetic resonance imaging of carotid artery thrombus in acute stroke. Lancet 1999, 353:122–123.

    Article  PubMed  CAS  Google Scholar 

  59. Moody AR, Murphy RE, Morgan PS, et al.: Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 2003, 107:3047–3052.

    Article  PubMed  Google Scholar 

  60. Murphy RE, Moody AR, Morgan PS, et al.: Prevalence of complicated carotid atheroma as detected by magnetic resonance direct thrombus imaging in patients with suspected carotid artery stenosis and previous acute cerebral ischemia. Circulation 2003, 107:3053–3058.

    Article  PubMed  Google Scholar 

  61. Estes JM, Quist WC, Lo Gerfo FW, Costello P: Noninvasive characterization of plaque morphology using helical computed tomography. J Cardiovasc Surg 1998, 39:527–534.

    CAS  Google Scholar 

  62. Porsche C, Walker L, Mendelow AD, Birchall D: Assessment of vessel wall thickness in carotid atherosclerosis using spiral CT angiography. 2002, 23:437–440.

    CAS  Google Scholar 

  63. Jaffer FA, O’Donnell CJ, Larson MG, et al.: Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002, 22:849–854.

    Article  PubMed  CAS  Google Scholar 

  64. Prince MR, Narasimham DL, Jacoby WT, et al.: Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. Am J Roentgenol 1996, 166:1387–1397.

    CAS  Google Scholar 

  65. Shunk KA, Garot J, Atalar E, Lima JA: Transesophageal magnetic resonance imaging of the aortic arch and descending thoracic aorta in patients with aortic atherosclerosis. 2001, 37:2031–2035.

    CAS  Google Scholar 

  66. Takasu J, Takanashi K, Naito S, et al.: Evaluation of morphological changes of the atherosclerotic aorta by enhanced computed tomography. Atherosclerosis 1992, 97:107–121.

    Article  PubMed  CAS  Google Scholar 

  67. Tenenbaum A, Garniek A, Shemesh J, et al.: Dual-helical CT for detecting aortic atheromas as a source of stroke: comparison with transesophageal echocardiography. Radiology 1998, 208:153–158.

    PubMed  CAS  Google Scholar 

  68. Parthenakis F, Skalidis E, Simantirakis E, et al.: Absence of atherosclerotic lesions in the thoracic aorta indicates absence of significant coronary artery disease. Am J Cardiol 1996, 77:1118–1121.

    Article  PubMed  CAS  Google Scholar 

  69. The French Study of Aortic Plaques in Stroke Group: Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med 1996, 334:1216–1221.

    Article  Google Scholar 

  70. McConnell MV, Aikawa M, Maier SE, et al.: MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol 1999, 19:1956–1959.

    PubMed  CAS  Google Scholar 

  71. Helft G, Worthley SG, Fuster V, et al.: Progression and regression of atherosclerotic lesions: monitoring with serial noninvasive magnetic resonance imaging. Circulation 2002, 105:993–998.

    Article  PubMed  Google Scholar 

  72. Corti R, Fayad ZA, Fuster V, et al.: Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001, 104:249–252.

    PubMed  CAS  Google Scholar 

  73. Zhao XQ, Yuan C, Hatsukami TS, et al.: Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001, 21:1623–1629.

    PubMed  CAS  Google Scholar 

  74. Corti R, Osende JI, Fallon JT, et al.: The selective peroxisomal proliferator-activated receptor-gamma agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis: in vivo study by high-resolution magnetic resonance imaging. J Am Coll Cardiol 2004, 43:464–473.

    Article  PubMed  CAS  Google Scholar 

  75. Choudhury RP, Fuster V, Badimon JJ, et al.: MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 2002, 22:1065–1074.

    Article  PubMed  CAS  Google Scholar 

  76. Kolodgie FD, Petrov A, Virmani R, et al.: Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin v: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003, 108:3134–3139.

    Article  PubMed  CAS  Google Scholar 

  77. Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105:2766–2771.

    Article  PubMed  Google Scholar 

  78. Jaffer FA, Tung CH, Gerszten RE, Weissleder R: In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 2002, 22:1929–1935.

    Article  PubMed  CAS  Google Scholar 

  79. Winter PM, Morawski AM, Caruthers SD, et al.: Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003, 108:2270–2274.

    Article  PubMed  CAS  Google Scholar 

  80. Weissleder R, Mahmood U: Molecular imaging. Radiology 2001, 219:316–333.

    PubMed  CAS  Google Scholar 

  81. Wickline SA, Lanza GM: Nanotechnology for molecular imaging and targeted therapy. Circulation 2003, 107:1092–1095.

    Article  PubMed  Google Scholar 

  82. Wickline SA, Lanza GM: Molecular imaging, targeted therapeutics, and nanoscience. J Cell Biochem 2002, 39(suppl):90–97.

    Article  CAS  Google Scholar 

  83. Rudin M, Weissleder R: Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003, 2:123–131.

    Article  PubMed  CAS  Google Scholar 

  84. Aime S, Cabella C, Colombatto S, et al.: Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 2002, 16:394–406.

    Article  PubMed  Google Scholar 

  85. Moreno PR, Falk E, Palacios IF, et al.: Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994, 90:775–778.

    PubMed  CAS  Google Scholar 

  86. Ruehm SG, Corot C, Vogt P, et al.: Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001, 103:415–422.

    PubMed  CAS  Google Scholar 

  87. Schmitz SA, Taupitz M, Wagner S, et al.: Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001, 14:355–361.

    Article  PubMed  CAS  Google Scholar 

  88. Kooi ME, Cappendijk VC, Cleutjens KB, et al.: Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003, 107:2453–2458.

    Article  PubMed  CAS  Google Scholar 

  89. Foster-Gareau P, Heyn C, Alejski A, Rutt BK: Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 2003, 49:968–971.

    Article  PubMed  Google Scholar 

  90. Hinds KA, Hill JM, Shapiro EM, et al.: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003, 102:867–872.

    Article  PubMed  CAS  Google Scholar 

  91. Sirol M, Fuster V, Toussaint JF, Fayad Z: Molecular imaging for the diagnosis of high-risk plaque. Arch Mal Coeur Vaiss 2003, 96:1219–1224.

    PubMed  CAS  Google Scholar 

  92. Sipkins DA, Cheresh DA, Kazemi MR, et al.: Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998, 4:623–626.

    Article  PubMed  CAS  Google Scholar 

  93. Anderson SA, Rader RK, Westlin WF, et al.: Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 2000, 44:433–439.

    Article  PubMed  CAS  Google Scholar 

  94. Yu X, Song SK, Chen J, et al.: High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 2000, 44:867–872.

    Article  PubMed  CAS  Google Scholar 

  95. Flacke S, Fischer S, Scott MJ, et al.: Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001, 104:1280–1285.

    PubMed  CAS  Google Scholar 

  96. Sirol M, Aguinaldo JG, Itskovich VV, et al.: Arterial thrombus detection and temporal evolution evaluation using in vivo molecular magnetic resonance imaging (MRI). Circulation 2003, 108:IV98–99.

    Google Scholar 

  97. Winter PM, Caruthers SD, Yu X, et al.: Improved molecular imaging contrast agent for detection of human thrombus. Magn Reson Med 2003, 50:411–416.

    Article  PubMed  CAS  Google Scholar 

  98. Louie AY, Huber MM, Ahrens ET, et al.: In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000, 18:321–325.

    Article  PubMed  CAS  Google Scholar 

  99. Schar M, Kim WY, Stuber M, et al.: The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging 2003, 17:538–544.

    Article  PubMed  Google Scholar 

  100. Toussaint JF, Southern JF, Fuster V, Kantor HL: Water diffusion properties of human atherosclerosis and thrombosis measured by pulse field gradient nuclear magnetic resonance. Arterioscler Thromb Vasc Biol 1997, 17:542–546.

    PubMed  CAS  Google Scholar 

  101. Coombs BD, Rapp JH, Ursell PC, et al.: Structure of plaque at carotid bifurcation: high-resolution MRI with histological correlation. Stroke 2001, 32:2516–2521.

    PubMed  CAS  Google Scholar 

  102. Yuan C, Kerwin WS, Ferguson MS, et al.: Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 2002, 15:62–67.

    Article  PubMed  Google Scholar 

  103. Sirol M, Itskovich VV, Mani V, et al.: New MRI method for atheroslerotic plaque detection using a novel mr contrast agent in vivo. Paper presented at the Seventh Annual SCMR Scientific Sessions 2004. Barcelona, Spain, 2004.

  104. Halliburton SS, Stillman AE, Flohr T, et al.: Do segmented reconstruction algorithms for cardiac multi-slice computed tomography improve image quality? Herz 2003, 28:20–31.

    Article  PubMed  Google Scholar 

  105. Flohr TG, Schoepf UJ, Kuettner A, et al.: Advances in cardiac imaging with 16-section CT systems. Acad Radiol 2003, 10:386–401.

    Article  PubMed  Google Scholar 

  106. Fayad ZA, Fuster V, Nikolaou K, Becker C: Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 2002, 106:2026–2034.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayad, Z.A., Sirol, M., Nikolaou, K. et al. Magnetic resonance imaging and computed tomography in assessment of atherosclerotic plaque. Curr Atheroscler Rep 6, 232–242 (2004). https://doi.org/10.1007/s11883-004-0037-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0037-2

Keywords

Navigation