Skip to main content

Advertisement

Log in

Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma

  • Basic and Applied Science (M Frieri and PJ Bryce, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Although fungi are pervasive in many environments, few cause disease in humans. Of these, Aspergillus fumigatus is particularly well suited to be a pathogen of the human lung. Its physical and biological characteristics combine to provide an organism that can cause tremendous morbidity and high mortality if left unchecked. Luckily, that is rarely the case. However, repeated exposure to inhaled A. fumigatus spores often results in an immune response that carries significant immunopathology, exacerbating asthma and changing the structure of the lung with chronic impacts to pulmonary function. This review focuses on the current understanding of the mechanisms that are associated with fungal exposure, sensitization, and infection in asthmatics, as well as the function of various inflammatory cells associated with severe asthma with fungal sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wheatley LM, Togias A. Clinical practice. Allergic rhinitis. N Engl J Med. 2015;372(5):456–63. doi:10.1056/NEJMcp1412282.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Huffman MM. Food and environmental allergies. Prim Care. 2015;42(1):113–28. doi:10.1016/j.pop.2014.09.010.

    Article  PubMed  Google Scholar 

  3. Hammond C, Kurten M, Kennedy JL. Rhinovirus and asthma: a storied history of incompatibility. Curr Allergy Asthma Rep. 2015;15(2):502. doi:10.1007/s11882-014-0502-0.

    Article  PubMed  CAS  Google Scholar 

  4. Mathias CB. Natural killer cells in the development of asthma. Curr Allergy Asthma Rep. 2015;15(2):500. doi:10.1007/s11882-014-0500-2.

    Article  PubMed  CAS  Google Scholar 

  5. Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol. 2012;129(2):280–91. doi:10.1016/j.jaci.2011.12.970. quiz 92–3.

    Article  PubMed  Google Scholar 

  6. Chaudhary N, Marr KA. Impact of Aspergillus fumigatus in allergic airway diseases. Clin Transl Allergy. 2011;1(1):4. doi:10.1186/2045-7022-1-4.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Knutsen AP. Allergic bronchopulmonary aspergillosis. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2015;45(2):298–9. doi:10.1111/cea.12459.

    Article  CAS  Google Scholar 

  8. Agarwal R. Allergic bronchopulmonary aspergillosis. Chest. 2009;135(3):805–26. doi:10.1378/chest.08-2586.

    Article  PubMed  Google Scholar 

  9. Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–65. doi:10.1128/cmr.00055-08.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2006;27(3):615–26. doi:10.1183/09031936.06.00074705.

    CAS  Google Scholar 

  11. Templeton SP, Buskirk AD, Green BJ, Beezhold DH, Schmechel D. Murine models of airway fungal exposure and allergic sensitization. Med Mycol. 2010;48(2):217–28. doi:10.3109/13693780903420658.

    Article  PubMed  Google Scholar 

  12. Murdock BJ, Shreiner AB, McDonald RA, Osterholzer JJ, White ES, Toews GB, et al. Coevolution of TH1, TH2, and TH17 responses during repeated pulmonary exposure to Aspergillus fumigatus conidia. Infect Immun. 2011;79(1):125–35. doi:10.1128/iai.00508-10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shevchenko MA, Bolkhovitina EL, Servuli EA, Sapozhnikov AM. Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation. Respir Res. 2013;14:78. doi:10.1186/1465-9921-14-78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gao FS, Gao YY, Liu MJ, Liu YQ. Chronic Aspergillus fumigatus exposure upregulates the expression of mucin 5AC in the airways of asthmatic rats. Exp Lung Res. 2012;38(5):256–65. doi:10.3109/01902148.2012.676705.

    Article  CAS  PubMed  Google Scholar 

  15. Hogaboam CM, Blease K, Mehrad B, Steinhauser ML, Standiford TJ, Kunkel SL, et al. Chronic airway hyperreactivity, goblet cell hyperplasia, and peribronchial fibrosis during allergic airway disease induced by Aspergillus fumigatus. Am J Pathol. 2000;156(2):723–32. doi:10.1016/s0002-9440(10)64775-x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Land CJ, Sostaric B, Fuchs R, Lundstrom H, Hult K. Intratracheal exposure of rats to Aspergillus fumigatus spores isolated from sawmills in Sweden. Appl Environ Microbiol. 1989;55(11):2856–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Samarasinghe AE, Hoselton SA, Schuh JM. A comparison between intratracheal and inhalation delivery of Aspergillus fumigatus conidia in the development of fungal allergic asthma in C57BL/6 mice. Fungal Biol. 2011;115(1):21–9. doi:10.1016/j.funbio.2010.09.013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hoselton SA, Samarasinghe AE, Seydel JM, Schuh JM. An inhalation model of airway allergic response to inhalation of environmental Aspergillus fumigatus conidia in sensitized BALB/c mice. Med Mycol. 2010;48(8):1056–65. doi:10.3109/13693786.2010.485582. The first murine model of fungal allergic asthma using a simple, cost-effective method of nose-only, dry conidia delivery; demonstrating enhanced airway wall remodeling and inflammation.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ghosh S, Hoselton SA, Schuh JM. Characterization of CD19(+)CD23(+)B2 lymphocytes in the allergic airways of BALB/c mice in response to the inhalation of Aspergillus fumigatus conidia. Open Immunol J. 2012;5:46–54. doi:10.2174/1874226201205010046.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Buskirk AD, Green BJ, Lemons AR, Nayak AP, Goldsmith WT, Kashon ML, et al. A murine inhalation model to characterize pulmonary exposure to dry Aspergillus fumigatus conidia. PLoS One. 2014;9(10):e109855. doi:10.1371/journal.pone.0109855. A recent model advancement using nose-only, dry inhalation generated via an acoustical exposure system and real-time particle mass determination to estimate conidia delivered to the airways.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):549–56. doi:10.1016/j.jaci.2011.05.038. e1-12.

    Article  CAS  PubMed  Google Scholar 

  22. Roy RM, Klein BS. Fungal glycan interactions with epithelial cells in allergic airway disease. Curr Opin Microbiol. 2013;16(4):404–8. doi:10.1016/j.mib.2013.03.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Salazar F, Ghaemmaghami AM. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol. 2013;4:356. doi:10.3389/fimmu.2013.00356.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–92. doi:10.1038/nm.2737.

    Article  CAS  PubMed  Google Scholar 

  25. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8(3):193–204. doi:10.1038/nri2275.

    Article  CAS  PubMed  Google Scholar 

  26. Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol. 2014;134(3):499–507. doi:10.1016/j.jaci.2014.06.036. Recent review of the initial interaction with allergens, demonstrating the role of structural cells in acquired responses.

    Article  CAS  PubMed  Google Scholar 

  27. Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12(2):310–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Tekaia F, Latge JP. Aspergillus fumigatus: saprophyte or pathogen? Curr Opin Microbiol. 2005;8(4):385–92. doi:10.1016/j.mib.2005.06.017.

    Article  CAS  PubMed  Google Scholar 

  29. Binder U, Lass-Florl C. New insights into invasive aspergillosis—from the pathogen to the disease. Curr Pharm Des. 2013;19(20):3679–88.

    Article  CAS  PubMed  Google Scholar 

  30. Sales-Campos H, Tonani L, Cardoso CR, Kress MR. The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection. Biomed Res Int. 2013;2013:693023. doi:10.1155/2013/693023.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Infect Immun. 1999;67(10):5200–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol (Orlando, Fla). 2012;143(3):222–35. doi:10.1016/j.clim.2012.03.001.

    Article  CAS  Google Scholar 

  33. Divekar R, Kita H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol. 2015;15(1):98–103. doi:10.1097/aci.0000000000000133.

    Article  CAS  PubMed  Google Scholar 

  34. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83. doi:10.1146/annurev.immunol.021908.132532.

    Article  CAS  PubMed  Google Scholar 

  35. Balhara J, Gounni AS. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol. 2012;5(6):605–9. doi:10.1038/mi.2012.74.

    Article  CAS  PubMed  Google Scholar 

  36. Thornton EE, Looney MR, Bose O, Sen D, Sheppard D, Locksley R, et al. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med. 2012;209(6):1183–99. doi:10.1084/jem.20112667.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Segal BH. Role of macrophages in host defense against aspergillosis and strategies for immune augmentation. Oncologist. 2007;12 Suppl 2:7–13. doi:10.1634/theoncologist.12-S2-7.

    CAS  PubMed  Google Scholar 

  38. McCormick A, Loeffler J, Ebel F. Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell Microbiol. 2010;12(11):153–43. doi:10.1111/j.1462-5822.2010.01517.x. An excellent primer walking through the instigating events and maintenance of Aspergillus fumigatus-induced pulmonary responses.

    Article  CAS  Google Scholar 

  39. Dubourdeau M, Athman R, Balloy V, Huerre M, Chignard M, Philpott DJ, et al. Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol. 2006;177(6):3994–4001.

    Article  CAS  PubMed  Google Scholar 

  40. Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol. 2006;176(6):3717–24.

    Article  CAS  PubMed  Google Scholar 

  41. Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol. 2007;9(2):368–81. doi:10.1111/j.1462-5822.2006.00796.x.

    Article  CAS  PubMed  Google Scholar 

  42. Bang BR, Chun E, Shim EJ, Lee HS, Lee SY, Cho SH, et al. Alveolar macrophages modulate allergic inflammation in a murine model of asthma. Exp Mol Med. 2011;43(5):275–80. doi:10.3858/emm.2011.43.5.028.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fitzpatrick AM, Holguin F, Teague WG, Brown LA. Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J Allergy Clin Immunol. 2008;121(6):1372–8. doi:10.1016/j.jaci.2008.03.008. 8 e1-3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chanez P, Vago P, Demoly P, Cornillac L, Godard P, Bureau JP, et al. Airway macrophages from patients with asthma do not proliferate. J Allergy Clin Immunol. 1993;92(6):869–77.

    Article  CAS  PubMed  Google Scholar 

  45. Vissers JL, van Esch BC, Hofman GA, van Oosterhout AJ. Macrophages induce an allergen-specific and long-term suppression in a mouse asthma model. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2005;26(6):1040–6. doi:10.1183/09031936.05.00089304.

    CAS  Google Scholar 

  46. Upham JW, Strickland DH, Bilyk N, Robinson BW, Holt PG. Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion. Immunology. 1995;84(1):142–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Ghosh S, Samarasinghe AE, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan deposition and co-localization with inflammatory cells and collagen in a murine model of fungal allergic asthma. Inflamm Res Off J Eur Histamine Res Soc [et al]. 2014;63(6):475–84. doi:10.1007/s00011-014-0719-3. Article highlighting the importance of the local pulmonary environment on episodic allergic inflammation.

    CAS  Google Scholar 

  48. Murdock BJ, Falkowski NR, Shreiner AB, Sadighi Akha AA, McDonald RA, White ES, et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect Immun. 2012;80(4):1424–36. doi:10.1128/iai.05529-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Magnan A, van Pee D, Bongrand P, Vervloet D. Alveolar macrophage interleukin (IL)-10 and IL-12 production in atopic asthma. Allergy. 1998;53(11):1092–5.

    Article  CAS  PubMed  Google Scholar 

  50. van Helden MJ, Lambrecht BN. Dendritic cells in asthma. Curr Opin Immunol. 2013;25(6):745–54.

    Article  PubMed  CAS  Google Scholar 

  51. Gill MA. The role of dendritic cells in asthma. J Allergy Clin Immunol. 2012;129(4):889–901. doi:10.1016/j.jaci.2012.02.028.

    Article  CAS  PubMed  Google Scholar 

  52. Plantinga M, Hammad H, Lambrecht BN. Origin and functional specializations of DC subsets in the lung. Eur J Immunol. 2010;40(8):2112–8. doi:10.1002/eji.201040562.

    Article  CAS  PubMed  Google Scholar 

  53. Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol. 2012;30:243–70. doi:10.1146/annurev-immunol-020711-075021.

    Article  CAS  PubMed  Google Scholar 

  54. Bozza S, Perruccio K, Montagnoli C, Gaziano R, Bellocchio S, Burchielli E, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood. 2003;102(10):3807–14. doi:10.1182/blood-2003-03-0748.

    Article  CAS  PubMed  Google Scholar 

  55. Loures FV, Rohm M, Lee CK, Santos E, Wang JP, Specht CA, et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog. 2015;11(2):e1004643. doi:10.1371/journal.ppat.1004643. Article reporting for the first time the formation of an extracellular anti-fungal mechanism from plasmacytoid DCs similar to NETS formed by neutrophils.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Mezger M, Kneitz S, Wozniok I, Kurzai O, Einsele H, Loeffler J. Proinflammatory response of immature human dendritic cells is mediated by dectin-1 after exposure to Aspergillus fumigatus germ tubes. J Infect Dis. 2008;197(6):924–31. doi:10.1086/528694.

    Article  CAS  PubMed  Google Scholar 

  57. Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol. 2002;168(3):1362–71.

    Article  CAS  PubMed  Google Scholar 

  58. Nakagome K, Matsushita S, Nagata M. Neutrophilic inflammation in severe asthma. Int Arch Allergy Immunol. 2012;158 Suppl 1:96–102. doi:10.1159/000337801.

    Article  CAS  PubMed  Google Scholar 

  59. Chang S, Linderholm A, Franzi L, Kenyon N, Grasberger H, Harper R. Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med. 2013;65:38–46. doi:10.1016/j.freeradbiomed.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  60. Gregory LG, Causton B, Murdoch JR, Mathie SA, O’Donnell V, Thomas CP, et al. Inhaled house dust mite induces pulmonary T helper 2 cytokine production. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2009;39(10):1597–610. doi:10.1111/j.1365-2222.2009.03302.x.

    Article  CAS  Google Scholar 

  61. Mircescu MM, Lipuma L, van Rooijen N, Pamer EG, Hohl TM. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis. 2009;200(4):647–56. doi:10.1086/600380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Werner JL, Gessner MA, Lilly LM, Nelson MP, Metz AE, Horn D, et al. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect Immun. 2011;79(10):3966–77. doi:10.1128/iai.05493-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 2001;9(8):382–9.

    Article  CAS  PubMed  Google Scholar 

  64. Park SJ, Mehrad B. Innate immunity to Aspergillus species. Clin Microbiol Rev. 2009;22(4):535–51. doi:10.1128/cmr.00014-09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Diamond RD. Immune response to fungal infection. Rev Infect Dis. 1989;11 Suppl 7:S1600–4.

    Article  PubMed  Google Scholar 

  66. Park SJ, Wiekowski MT, Lira SA, Mehrad B. Neutrophils regulate airway responses in a model of fungal allergic airways disease. J Immunol. 2006;176(4):2538–45.

    Article  CAS  PubMed  Google Scholar 

  67. Tabachnik E, Schuster A, Gold WM, Nadel JA. Role of neutrophil elastase in allergen-induced lysozyme secretion in the dog trachea. J Appl Physiol. 1992;73(2):695–700.

    CAS  PubMed  Google Scholar 

  68. Bliss SK, Butcher BA, Denkers EY. Rapid recruitment of neutrophils containing prestored IL-12 during microbial infection. J Immunol. 2000;165(8):4515–21.

    Article  CAS  PubMed  Google Scholar 

  69. Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol. 2004;173(12):7406–15.

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Eosinophils in fungus-associated allergic pulmonary disease. Front Pharmacol. 2013;4. doi:10.3389/fphar.2013.00008.

  71. Jacobsen EA, Zellner KR, Colbert D, Lee NA, Lee JJ. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J Immunol. 2011;187(11):6059–68. doi:10.4049/jimmunol.1102299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Malm-Erjefalt M, Greiff L, Ankerst J, Andersson M, Wallengren J, Cardell LO, et al. Circulating eosinophils in asthma, allergic rhinitis, and atopic dermatitis lack morphological signs of degranulation. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2005;35(10):1334–40. doi:10.1111/j.1365-2222.2005.02335.x.

    Article  CAS  Google Scholar 

  73. Possa SS, Leick EA, Prado CM, Martins MA, Tiberio IF. Eosinophilic inflammation in allergic asthma. Front Pharmacol. 2013;4:46. doi:10.3389/fphar.2013.00046.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells’ integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol. 2015;125:41–85. doi:10.1016/bs.ai.2014.09.002.

    Article  PubMed  Google Scholar 

  75. Butterworth AE, Sturrock RF, Houba V, Mahmoud AA, Sher A, Rees PH. Eosinophils as mediators of antibody-dependent damage to schistosomula. Nature. 1975;256(5520):727–9.

    Article  CAS  PubMed  Google Scholar 

  76. Piliponsky AM, Gleich GJ, Bar I, Levi-Schaffer F. Effects of eosinophils on mast cells: a new pathway for the perpetuation of allergic inflammation. Mol Immunol. 2002;38(16–18):1369.

    Article  CAS  PubMed  Google Scholar 

  77. Minnicozzi M, Duran WN, Gleich GJ, Egan RW. Eosinophil granule proteins increase microvascular macromolecular transport in the hamster cheek pouch. J Immunol. 1994;153(6):2664–70.

    CAS  PubMed  Google Scholar 

  78. Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, et al. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol. 1999;162(5):2477–87.

    CAS  PubMed  Google Scholar 

  79. Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ. IgA-induced eosinophil degranulation. J Immunol. 1989;142(7):2393–400.

    CAS  PubMed  Google Scholar 

  80. Monteiro RC, Hostoffer RW, Cooper MD, Bonner JR, Gartland GL, Kubagawa H. Definition of immunoglobulin a receptors on eosinophils and their enhanced expression in allergic individuals. J Clin Invest. 1993;92(4):1681–5. doi:10.1172/JCI116754.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Motegi Y, Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J Immunol. 1998;161(8):4340–6.

    CAS  PubMed  Google Scholar 

  82. Moqbel R, Walsh GM, Nagakura T, MacDonald AJ, Wardlaw AJ, Iikura Y, et al. The effect of platelet-activating factor on IgE binding to, and IgE-dependent biological properties of, human eosinophils. Immunology. 1990;70(2):251–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature. 1994;367(6459):183–6. doi:10.1038/367183a0.

    Article  CAS  PubMed  Google Scholar 

  84. Kita H, Kaneko M, Bartemes KR, Weiler DA, Schimming AW, Reed CE, et al. Does IgE bind to and activate eosinophils from patients with allergy? J Immunol. 1999;162(11):6901–11.

    CAS  PubMed  Google Scholar 

  85. Seminario MC, Saini SS, MacGlashan Jr DW, Bochner BS. Intracellular expression and release of Fc epsilon RI alpha by human eosinophils. J Immunol. 1999;162(11):6893–900.

    CAS  PubMed  Google Scholar 

  86. Shreiner AB, Murdock BJ, Sadighi Akha AA, Falkowski NR, Christensen PJ, White ES, et al. Repeated exposure to Aspergillus fumigatus conidia results in CD4+ T cell-dependent and -independent pulmonary arterial remodeling in a mixed Th1/Th2/Th17 microenvironment that requires interleukin-4 (IL-4) and IL-10. Infect Immun. 2012;80(1):388–97. doi:10.1128/iai.05530-11. Article underscores the mixed reaction to repeated Aspergillus exposure.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Lindell DM, Berlin AA, Schaller MA, Lukacs NW. B cell antigen presentation promotes Th2 responses and immunopathology during chronic allergic lung disease. PLoS One. 2008;3(9):e3129. doi:10.1371/journal.pone.0003129.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Maggi E. The TH1/TH2 paradigm in allergy. Immunotechnol Int J Immunol Eng. 1998;3(4):233–44.

    Article  CAS  Google Scholar 

  89. Barnes PJ, Adcock IM. Transcription factors and asthma. Eur Respir J Off J Eur Soc Clin Respir Physiol. 1998;12(1):221–34.

    CAS  Google Scholar 

  90. Pedroza M, Schneider DJ, Karmouty-Quintana H, Coote J, Shaw S, Corrigan R, et al. Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One. 2011;6(7):e22667. doi:10.1371/journal.pone.0022667.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Doganci A, Sauer K, Karwot R, Finotto S. Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol. 2005;28(3):257–70. doi:10.1385/criai:28:3:257.

    Article  CAS  PubMed  Google Scholar 

  92. Song C, Luo L, Lei Z, Li B, Liang Z, Liu G, et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol. 2008;181(9):6117–24.

    Article  CAS  PubMed  Google Scholar 

  93. Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L, et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol. 2003;28(1):42–50. doi:10.1165/rcmb.4832.

    Article  CAS  PubMed  Google Scholar 

  94. Ghosh S, Hoselton SA, Asbach SV, Steffan BN, Wanjara SB, Dorsam GP, et al. B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol. 2015;12(2):202–12. doi:10.1038/cmi.2014.103. Article demonstrating a role for B cells in eosinophilic and neutrophilic inflammation after Aspergillus exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Engler DB, Reuter S, van Wijck Y, Urban S, Kyburz A, Maxeiner J, et al. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. Proc Natl Acad Sci U S A. 2014;111(32):11810–5. doi:10.1073/pnas.1410579111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Kearley J, Barker JE, Robinson DS, Lloyd CM. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med. 2005;202(11):1539–47. doi:10.1084/jem.20051166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Leech MD, Benson RA, De Vries A, Fitch PM, Howie SE. Resolution of Der p1-induced allergic airway inflammation is dependent on CD4+CD25+Foxp3+ regulatory cells. J Immunol. 2007;179(10):7050–8.

    Article  CAS  PubMed  Google Scholar 

  98. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86. doi:10.1084/jem.20030152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Pyzik M, Piccirillo CA. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol. 2007;82(2):335–46. doi:10.1189/jlb.1006644.

    Article  CAS  PubMed  Google Scholar 

  100. Ostroukhova M, Seguin-Devaux C, Oriss TB, Dixon-McCarthy B, Yang L, Ameredes BT, et al. Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest. 2004;114(1):28–38. doi:10.1172/jci20509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–5. doi:10.1002/eji.201040391.

    Article  CAS  PubMed  Google Scholar 

  102. Eisenstein EM, Williams CB. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res. 2009;65(5 Pt 2):26R–31. doi:10.1203/PDR.0b013e31819e76c7.

    Article  CAS  PubMed  Google Scholar 

  103. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6. doi:10.1038/ni.1659.

    Article  CAS  PubMed  Google Scholar 

  104. Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor beta and severe asthma: a perfect storm. Respir Med. 2014;108(10):1409–23. doi:10.1016/j.rmed.2014.08.008.

    Article  PubMed  Google Scholar 

  105. Tatler AL, Jenkins G. TGF-beta activation and lung fibrosis. Proc Am Thorac Soc. 2012;9(3):130–6. doi:10.1513/pats.201201-003AW.

    Article  CAS  PubMed  Google Scholar 

  106. Vercelli D, Gozdz J, von Mutius E. Innate lymphoid cells in asthma: when innate immunity comes in a Th2 flavor. Curr Opin Allergy Clin Immunol. 2014;14(1):29–34. doi:10.1097/aci.0000000000000023.

    Article  CAS  PubMed  Google Scholar 

  107. Hwang YY, McKenzie AN. Innate lymphoid cells in immunity and disease. Adv Exp Med Biol. 2013;785:9–26. doi:10.1007/978-1-4614-6217-0_2.

    Article  CAS  PubMed  Google Scholar 

  108. Woo Y, Jeong D, Chung DH, Kim HY. The roles of innate lymphoid cells in the development of asthma. Immune Netw. 2014;14(4):171–81. doi:10.4110/in.2014.14.4.171.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Cella M, Miller H, Song C. Beyond NK cells: the expanding universe of innate lymphoid cells. Front Immunol. 2014;5:282. doi:10.3389/fimmu.2014.00282.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Doherty TA. At the bench: understanding group 2 innate lymphoid cells in disease. J Leukoc Biol. 2015;97(3):455–67. doi:10.1189/jlb.5BT0814-374R.

    Article  CAS  PubMed  Google Scholar 

  111. Gold MJ, Antignano F, Halim TY, Hirota JA, Blanchet MR, Zaph C, et al. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol. 2014;133(4):1142–8. doi:10.1016/j.jaci.2014.02.033.

    Article  CAS  PubMed  Google Scholar 

  112. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293–301. doi:10.1038/nature14189. Current and comprehensive review of ILCs.

    Article  CAS  PubMed  Google Scholar 

  113. McKenzie AN. Type-2 innate lymphoid cells in asthma and allergy. Ann Am Thorac Soc. 2014;11 Suppl 5:S263–70. doi:10.1513/AnnalsATS.201403-097AW.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol. 2009;182(8):4938–46. doi:10.4049/jimmunol.0804250.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, et al. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun. 2012;80(1):410–8. doi:10.1128/IAI.05939-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwiebert L, Weaver CT, et al. The beta-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol (Baltimore, Md; 1950). 2012;189(7):3653–60.

    Article  CAS  Google Scholar 

  117. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol. 2012;188(3):1503–13. doi:10.4049/jimmunol.1102832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Bice DE, Gray RH, Evans MJ, Muggenburg BA. Identification of plasma cells in lung alveoli and interstitial tissues after localized lung immunization. J Leukoc Biol. 1987;41(1):1–7.

    CAS  PubMed  Google Scholar 

  119. Takhar P, Corrigan CJ, Smurthwaite L, O’Connor BJ, Durham SR, Lee TH, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol. 2007;119(1):213–8. doi:10.1016/j.jaci.2006.09.045.

    Article  CAS  PubMed  Google Scholar 

  120. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8(3):205–17. doi:10.1038/nri2273.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang M, Murphy RF, Agrawal DK. Decoding IgE Fc receptors. Immunol Res. 2007;37(1):1–16.

    Article  PubMed  Google Scholar 

  122. Rolinck-Werninghaus C, Wahn U, Hamelmann E. Anti-IgE therapy in allergic asthma. Curr Drug Targets Inflamm Allergy. 2005;4(5):551–64.

    Article  CAS  PubMed  Google Scholar 

  123. Nowak D. Management of asthma with anti-immunoglobulin E: a review of clinical trials of omalizumab. Respir Med. 2006;100(11):1907–17. doi:10.1016/j.rmed.2005.10.004.

    Article  PubMed  Google Scholar 

  124. Knutsen AP. Immunopathology and immunogenetics of allergic bronchopulmonary aspergillosis. J Allergy (Cairo). 2011;785983(2011). doi:10.1155/2011/785983.

  125. Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, et al. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med. 2010;207(13):2907–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Flicker S, Gadermaier E, Madritsch C, Valenta R. Passive immunization with allergen-specific antibodies. Curr Top Microbiol Immunol. 2011;820:141–59. doi:10.1007/82_2011_143.

  127. Qi H, Egen JG, Huang AY, Germain RN. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science (New York, NY). 2006;312(5780):1672–6. doi:10.1126/science.1125703.

    Article  CAS  Google Scholar 

  128. Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;176(2):705–10.

    Article  CAS  PubMed  Google Scholar 

  129. Lundy SK, Berlin AA, Martens TF, Lukacs NW. Deficiency of regulatory B cells increases allergic airway inflammation. Inflamm Res Off J Eur Histamine Res Soc [et al]. 2005;54(12):514–21. doi:10.1007/s00011-005-1387-0.

    CAS  Google Scholar 

  130. Drake LY, Iijima K, Hara K, Kobayashi T, Kephart GM, Kita H. B cells play key roles in th2-type airway immune responses in mice exposed to natural airborne allergens. PLoS One. 2015;10(3):e0121660. doi:10.1371/journal.pone.0121660. eCollection 2015. Article covering the contribution of the underappreciated role of B cells in pulmonary allergy.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Wang P, Zheng SG. Regulatory T cells and B cells: implication on autoimmune diseases. Int J Clin Exp Pathol. 2013;6(12):2668–74.

    PubMed Central  PubMed  Google Scholar 

  132. Ray A, Basu S, Williams CB, Salzman NH, Dittel BN. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J Immunol. 2012;188(7):3188–98. doi:10.4049/jimmunol.1103354.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Yu P, Wang Y, Chin RK, Martinez-Pomares L, Gordon S, Kosco-Vibois MH, et al. B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J Immunol. 2002;168(10):5117–23.

    Article  CAS  PubMed  Google Scholar 

  134. Moulin V, Andris F, Thielemans K, Maliszewski C, Urbain J, Moser M. B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J Exp Med. 2000;192(4):475–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity. 2006;24(2):203–15. doi:10.1016/j.immuni.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  136. Laurent T. The biology of hyaluronan. Introduction. Ciba Foundation symposium. 1989;143:1–20.

  137. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61. doi:10.1146/annurev.cellbio.23.090506.123337.

    Article  CAS  PubMed  Google Scholar 

  138. Ohkawara Y, Tamura G, Iwasaki T, Tanaka A, Kikuchi T, Shirato K. Activation and transforming growth factor-beta production in eosinophils by hyaluronan. Am J Respir Cell Mol Biol. 2000;23(4):444–51. doi:10.1165/ajrcmb.23.4.3875.

    Article  CAS  PubMed  Google Scholar 

  139. Cheng G, Swaidani S, Sharma M, Lauer ME, Hascall VC, Aronica MA. Correlation of hyaluronan deposition with infiltration of eosinophils and lymphocytes in a cockroach-induced murine model of asthma. Glycobiology. 2013;23(1):43–58. doi:10.1093/glycob/cws122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology. Am J Physiol Lung Cell Mol Physio. 2011;301(2):L137–47. doi:10.1152/ajplung.00071.2010.

    Article  CAS  Google Scholar 

  141. Liang J, Jiang D, Jung Y, Xie T, Ingram J, Church T, et al. Role of hyaluronan and hyaluronan-binding proteins in human asthma. J Allergy Clin Immunol. 2011;128(2):403–11. doi:10.1016/j.jaci.2011.04.006. e3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Cheng G, Swaidani S, Sharma M, Lauer ME, Hascall VC, Aronica MA. Hyaluronan deposition and correlation with inflammation in a murine ovalbumin model of asthma. Matrix Biol. 2011;30(2):126–34. doi:10.1016/j.matbio.2010.12.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol. 2014. doi:10.3389/fimmu.2014.00101.

  144. Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology. 2014. doi:10.1016/j.imbio.2014.12.005.

    Google Scholar 

  145. Ghosh S, Hoselton SA, Wanjara SB, Carlson J, McCarthy JB, Dorsam GP, et al. Hyaluronan stimulates ex vivo B lymphocyte chemotaxis and cytokine production in a murine model of fungal allergic asthma. Immunobiology. 2015. doi:10.1016/j.imbio.2015.01.011.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Institutes of health (NIH) (Grant 1R15HL117254-01) to JMS. We also thank Jessica Ebert for critical reading of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Drs. Ghosh, Schuh, and Mr. Hoselton declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. Schuh.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Hoselton, S.A. & Schuh, J.M. Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma. Curr Allergy Asthma Rep 15, 59 (2015). https://doi.org/10.1007/s11882-015-0561-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0561-x

Keywords

Navigation