Skip to main content

Advertisement

Log in

Novel Microbiome-Based Therapeutics for Chronic Rhinosinusitis

  • Rhinosinusitis (J Mullol, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The human microbiome, i.e. the collection of microbes that live on, in and interact with the human body, is extraordinarily diverse; microbiota have been detected in every tissue of the human body interrogated to date. Resident microbiota interact extensively with immune cells and epithelia at mucosal surfaces including the airways, and chronic inflammatory and allergic respiratory disorders are associated with dysbiosis of the airway microbiome. Chronic rhinosinusitis (CRS) is a heterogeneous disease with a large socioeconomic impact, and recent studies have shown that sinus inflammation is associated with decreased sinus bacterial diversity and the concomitant enrichment of specific sinus pathogens. Here, we discuss the potential role for probiotic supplementation for CRS in light of this increasing understanding of the airway microbiome and microbial interactions with the host. We focus on the ecological significance of microbiome-based probiotic supplementation and potential interactions with the gastrointestinal tract and consider microbial administration methods for treatment of CRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12(5):R50.

    PubMed Central  PubMed  Google Scholar 

  3. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Consortium THMP. Structure, function, and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Google Scholar 

  5. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Rakoff-Nahoum S, Medzhitov R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol. 2008;1 Suppl 1:S10–4.

    CAS  PubMed  Google Scholar 

  7. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Scanlan PD, Shanahan F, O’Mahony C, Marchesi JR. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn′s disease. J Clin Microbiol. 2006;44(11):3980–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337(6098):1115–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE. 2010;5(6):e11044.

    PubMed Central  PubMed  Google Scholar 

  11. Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Rev Respir Med. 2011;5(6):809–21.

    PubMed Central  PubMed  Google Scholar 

  12. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.

    PubMed  Google Scholar 

  13. Antunes MB, Cohen NA. Mucociliary clearance—a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol. 2007;7(1):5–10.

    PubMed  Google Scholar 

  14. Cohen NA. Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl. 2006;196:20–6.

    PubMed  Google Scholar 

  15. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R: Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio 2010, 1(3).

  16. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124(3):1393–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Ryu JH, Yoo JY, Kim MJ, Hwang SG, Ahn KC, Ryu JC, Choi MK, Joo JH, Kim CH, Lee SN et al. Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways. J Allergy Clin Immunol 2012.

  18. Psaltis AJ, Wormald PJ, Ha KR, Tan LW. Reduced levels of lactoferrin in biofilm-associated chronic rhinosinusitis. Laryngoscope. 2008;118(5):895–901.

    CAS  PubMed  Google Scholar 

  19. Pant H, Kette FE, Smith WB, Wormald PJ, Macardle PJ. Fungal-specific humoral response in eosinophilic mucus chronic rhinosinusitis. Laryngoscope. 2005;115(4):601–6.

    CAS  PubMed  Google Scholar 

  20. Woodworth BA, Neal JG, Newton D, Joseph K, Kaplan AP, Baatz JE, et al. Surfactant protein A and D in human sinus mucosa: a preliminary report. ORL J Otorhinolaryngol Relat Spec. 2007;69(1):57–60.

    CAS  PubMed  Google Scholar 

  21. Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser BJ, Bogaert D: Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 2014. Airway microbiome succession in early life may influence susceptibility to respiratory infection.

  22. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372–81.

    PubMed Central  PubMed  Google Scholar 

  23. Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML, Morrison HG, Paster BJ, O′Toole GA: The prevalence of Streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol 2012.

  24. Sibley CD, Surette MG. The polymicrobial nature of airway infections in cystic fibrosis: cangene gold medal lecture. Can J Microbiol. 2011;57(2):69–77.

    CAS  PubMed  Google Scholar 

  25. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A. 2012;109(15):5809–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, et al. Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS ONE. 2011;6(7):e22702.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community-implications for therapeutic management. PLoS ONE. 2012;7(4):e36313.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011;5(1):20–9.

    PubMed Central  PubMed  Google Scholar 

  29. Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A. 2007;104(51):20529–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hampton TH, Green DM, Cutting GR, Morrison HG, Sogin ML, Gifford AH, et al. The microbiome in pediatric cystic fibrosis patients: the role of shared environment suggests a window of intervention. Microbiome. 2014;2:14.

    PubMed Central  PubMed  Google Scholar 

  31. Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci U S A. 2012;109(34):13769–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Park H, Shin JW, Park SG, Kim W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS ONE. 2014;9(10):e109710.

    PubMed Central  PubMed  Google Scholar 

  33. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS ONE. 2010;5(1):e8578.

    PubMed Central  PubMed  Google Scholar 

  34. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth Cohort study. Gut. 2007;56(5):661–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Joffe TH, Simpson NA. Cesarean section and risk of asthma. The role of intrapartum antibiotics: a missing piece? J Pediatr. 2009;154(1):154.

    PubMed  Google Scholar 

  36. Johnson CC, Ownby DR, Alford SH, Havstad SL, Williams LK, Zoratti EM, et al. Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol. 2005;115(6):1218–24.

    CAS  PubMed  Google Scholar 

  37. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012;13(5):440–7. Perturbation of the GI microbiome leads to increased susceptibility of allergic airway disease.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111(2):805–10. Dog-associated house dust protects mice against allergic asthma through manipulation of the GI microbiome.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12.

    PubMed  Google Scholar 

  40. Bhattacharyya N. Incremental healthcare utilization and expenditures for allergic rhinitis in the United States. Laryngoscope. 2011;121(9):1830–3.

    PubMed  Google Scholar 

  41. Ramakrishnan VR, Feazel LM, Gitomer SA, Ir D, Robertson CE, Frank DN. The microbiome of the middle meatus in healthy adults. PLoS ONE. 2013;8(12):e85507. The normal sinonasal microbiome is comprised of diverse bacterial communities that can vary between individuals.

    PubMed Central  PubMed  Google Scholar 

  42. Abreu NA, Nagalingam NA, Song Y, Roediger FC, Pletcher SD, Goldberg AN, Lynch SV: Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med 2012, 4(151):151ra124.

  43. Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T. Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Head Neck Surg. 2013;139(12):1328–38.

    PubMed  Google Scholar 

  44. Feazel LM, Robertson CE, Ramakrishnan VR, Frank DN. Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope. 2012;122(2):467–72.

    PubMed Central  PubMed  Google Scholar 

  45. Abreu NA, Nagalingam, N.A., Song, Y., Roediger, F.C., Pletcher, S.D., Goldberg, A.N., Lynch, S.V.: Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Science Translational Medicine 2012, 124.

  46. Choi EB, Hong SW, Kim DK, Jeon SG, Kim KR, Cho SH, et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy. 2014;69(4):517–26.

    CAS  PubMed  Google Scholar 

  47. Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European academy of allergy and clinical immunology and the American academy of allergy, asthma & immunology. J Allergy Clin Immunol. 2013;131(6):1479–90. Proposed immunological endotypes in patients with chronic rhinosinusitis.

    PubMed Central  PubMed  Google Scholar 

  48. Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G, DeRuyck N, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008;122(5):961–8.

    CAS  PubMed  Google Scholar 

  49. Lee JT, Jansen M, Yilma AN, Nguyen A, Desharnais R, Porter E. Antimicrobial lipids: novel innate defense molecules are elevated in sinus secretions of patients with chronic rhinosinusitis. Am J Rhinol Allergy. 2010;24(2):99–104.

    PubMed Central  PubMed  Google Scholar 

  50. Gevaert P, Nouri-Aria KT, Wu H, Harper CE, Takhar P, Fear DJ, et al. Local receptor revision and class switching to IgE in chronic rhinosinusitis with nasal polyps. Allergy. 2013;68(1):55–63.

    CAS  PubMed  Google Scholar 

  51. Derycke L, Eyerich S, Van Crombruggen K, Perez-Novo C, Holtappels G, Deruyck N, et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS ONE. 2014;9(6):e97581.

    PubMed Central  PubMed  Google Scholar 

  52. Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130(5):1087–96.

    CAS  PubMed  Google Scholar 

  53. Walford HH, Lund SJ, Baum RE, White AA, Bergeron CM, Husseman J, et al. Increased ILC2s in the eosinophilic nasal polyp endotype are associated with corticosteroid responsiveness. Clin Immunol. 2014;155(1):126–35.

    CAS  PubMed  Google Scholar 

  54. Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011;242(1):233–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012;122(11):4145–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Cincik H, Ferguson BJ. The impact of endoscopic cultures on care in rhinosinusitis. Laryngoscope. 2006;116(9):1562–8.

    PubMed  Google Scholar 

  57. Drilling A, Coombs GW, Tan HL, Pearson JC, Boase S, Psaltis A, Speck P, Vreugde S, Wormald PJ: Cousins, siblings, or copies: the genomics of recurrent Staphylococcus aureus infections in chronic rhinosinusitis. Int Forum Allergy Rhinol 2014.

  58. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P et al. European Position Paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl 2012(23):3 p preceding table of contents, 1–298.

  59. Metchnikoff E. Optimistic studies. New York: Putnam′s Sons; 1908.

    Google Scholar 

  60. Food and Agriculture Organization of the United Nations (FAO). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001. http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf.

  61. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.

    PubMed  Google Scholar 

  62. Guglielmetti S, Mora D, Gschwender M, Popp K. Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life—a double-blind, placebo-controlled study. Aliment Pharmacol Ther. 2011;33(10):1123–32.

    CAS  PubMed  Google Scholar 

  63. Kruis W, Chrubasik S, Boehm S, Stange C, Schulze J. A double-blind placebo-controlled trial to study therapeutic effects of probiotic Escherichia coli Nissle 1917 in subgroups of patients with irritable bowel syndrome. Int J Colorectal Dis. 2012;27(4):467–74.

    PubMed Central  PubMed  Google Scholar 

  64. Tursi A, Brandimarte G, Giorgetti GM, Forti G, Modeo ME, Gigliobianco A. Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit. 2004;10(11):I126–31.

    Google Scholar 

  65. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol. 2005;100(7):1539–46.

    PubMed  Google Scholar 

  66. Mardini HE, Grigorian AY. Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm Bowel Dis. 2014;20(9):1562–7.

    PubMed  Google Scholar 

  67. Pierog A, Mencin A, Reilly NR. Fecal microbiota transplantation in children with recurrent clostridium difficile infection. Pediatr Infect Dis J. 2014;33(11):1198–200.

    PubMed  Google Scholar 

  68. Walia R, Kunde S, Mahajan L. Fecal microbiota transplantation in the treatment of refractory Clostridium difficile infection in children: an update. Curr Opin Pediatr. 2014;26(5):573–8.

    PubMed  Google Scholar 

  69. Walia R, Garg S, Song Y, Girotra M, Cuffari C, Fricke WF, et al. Efficacy of fecal microbiota transplantation in 2 children with recurrent clostridium difficile infection and its impact on their growth and gut microbiome. J Pediatr Gastroenterol Nutr. 2014;59(5):565–70.

    PubMed  Google Scholar 

  70. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing clostridium difficile infection. JAMA. 2014;312(17):1772–8.

    CAS  PubMed  Google Scholar 

  71. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ′RePOOPulating′ the gut. Microbiome. 2013;1(1):3.

    PubMed Central  PubMed  Google Scholar 

  72. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G, Stokholm J, Smith B, Krogfelt KA: Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011, 128(3):646-652 e641–645.

  73. Choi CH, Poroyko V, Watanabe S, Jiang D, Lane J, DeTineo M, et al. Seasonal allergic rhinitis affects sinonasal microbiota. Am J Rhinol Allergy. 2014;28(4):281–6.

    PubMed Central  PubMed  Google Scholar 

  74. Zhang B, An J, Shimada T, Liu S, Maeyama K. Oral administration of Enterococcus faecalis FK-23 suppresses Th17 cell development and attenuates allergic airway responses in mice. J Mol Med. 2012;30(2):248–54.

    Google Scholar 

  75. Winkler P, de Vrese M, Laue C, Schrezenmeir J. Effect of a dietary supplement containing probiotic bacteria plus vitamins and minerals on common cold infections and cellular immune parameters. Int J Clin Pharmacol Ther. 2005;43(7):318–26.

    CAS  PubMed  Google Scholar 

  76. Villena J, Chiba E, Tomosada Y, Salva S, Marranzino G, Kitazawa H, et al. Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol. 2012;13:53.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pellaton C, Nutten S, Thierry AC, Boudousquie C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflamm. 2012;2012:686739.

    Google Scholar 

  78. Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol. 2009;123(2):335–41.

    PubMed  Google Scholar 

  79. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076–9.

    CAS  PubMed  Google Scholar 

  80. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL, et al. Man′s best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol. 2010;126(2):410–2.

    PubMed Central  PubMed  Google Scholar 

  82. Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002;288(8):963–72.

    PubMed  Google Scholar 

  83. Wheeler JG, Shema SJ, Bogle ML, Shirrell MA, Burks AW, Pittler A, et al. Immune and clinical impact of Lactobacillus acidophilus on asthma. Ann Allergy Asthma Immunol. 1997;79(3):229–33.

    CAS  PubMed  Google Scholar 

  84. Helin T, Haahtela S, Haahtela T. No effect of oral treatment with an intestinal bacterial strain, Lactobacillus rhamnosus (ATCC 53103), on birch-pollen allergy: a placebo-controlled double-blind study. Allergy. 2002;57(3):243–6.

    CAS  PubMed  Google Scholar 

  85. Tamura M, Shikina T, Morihana T, Hayama M, Kajimoto O, Sakamoto A, et al. Effects of probiotics on allergic rhinitis induced by Japanese cedar pollen: randomized double-blind, placebo-controlled clinical trial. Int Arch Allergy Immunol. 2007;143(1):75–82.

    PubMed  Google Scholar 

  86. Wang MF, Lin HC, Wang YY, Hsu CH. Treatment of perennial allergic rhinitis with lactic acid bacteria. Pediatr Allergy Immunol. 2004;15(2):152–8.

    PubMed  Google Scholar 

  87. Peng GC, Hsu CH. The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr Allergy Immunol. 2005;16(5):433–8.

    PubMed  Google Scholar 

  88. Giovannini M, Agostoni C, Riva E, Salvini F, Ruscitto A, Zuccotti GV, et al. A randomized prospective double blind controlled trial on effects of long-term consumption of fermented milk containing Lactobacillus casei in pre-school children with allergic asthma and/or rhinitis. Pediatr Res. 2007;62(2):215–20.

    PubMed  Google Scholar 

  89. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Claesson MJ, Jeffery IB, Conde S, Power SE, O′Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.

    CAS  PubMed  Google Scholar 

  91. O′Toole PW. Changes in the intestinal microbiota from adulthood through to old age. Clin Microbiol Infect. 2012;18 Suppl 4:44–6.

    PubMed  Google Scholar 

  92. Mukerji SS, Pynnonen MA, Kim HM, Singer A, Tabor M, Terrell JE. Probiotics as adjunctive treatment for chronic rhinosinusitis: a randomized controlled trial. Otolaryngol Head Neck Surg. 2009;140(2):202–8.

    PubMed  Google Scholar 

  93. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, et al. Generation of regulatory dendritic cells and CD4 + Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A. 2010;107(5):2159–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Jang SO, Kim HJ, Kim YJ, Kang MJ, Kwon JW, Seo JH, et al. Asthma prevention by lactobacillus rhamnosus in a mouse model is associated with CD4(+)CD25(+)Foxp3(+) T cells. Allergy Asthma Immunol Res. 2012;4(3):150–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26(1):2–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Villena J, Barbieri N, Salva S, Herrera M, Alvarez S. Enhanced immune response to pneumococcal infection in malnourished mice nasally treated with heat-killed Lactobacillus casei. Microbiol Immunol. 2009;53(11):636–46.

    CAS  PubMed  Google Scholar 

  97. Licciardi PV, Toh ZQ, Dunne E, Wong SS, Mulholland EK, Tang M, et al. Protecting against pneumococcal disease: critical interactions between probiotics and the airway microbiome. PLoS Pathog. 2012;8(6):e1002652.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Park MK, Ngo V, Kwon YM, Lee YT, Yoo S, Cho YH, et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS ONE. 2013;8(10):e75368.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Harata G, He F, Hiruta N, Kawase M, Kubota A, Hiramatsu M, et al. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett Appl Microbiol. 2010;50(6):597–602.

    CAS  PubMed  Google Scholar 

  100. Cleland EJ, Drilling A, Bassiouni A, James C, Vreugde S, Wormald PJ. Probiotic manipulation of the chronic rhinosinusitis microbiome. Int Forum Allergy Rhinol. 2014;4(4):309–14.

    PubMed  Google Scholar 

  101. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3(10):777–88.

    CAS  PubMed  Google Scholar 

  102. Zheng J, Ganzle MG, Lin XB, Ruan L, Sun M: Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol 2014.

  103. Sawa N, Koga S, Okamura K, Ishibashi N, Zendo T, Sonomoto K. Identification and characterization of novel multiple bacteriocins produced by Lactobacillus sakei D98. J Appl Microbiol. 2013;115(1):61–9.

    CAS  PubMed  Google Scholar 

  104. Barbosa MS, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV, et al. Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami. J Appl Microbiol. 2014;116(5):1195–208.

    CAS  PubMed  Google Scholar 

  105. Agustina R, Kok FJ, van de Rest O, Fahmida U, Firmansyah A, Lukito W, et al. Randomized trial of probiotics and calcium on diarrhea and respiratory tract infections in Indonesian children. Pediatrics. 2012;129(5):e1155–64.

    PubMed  Google Scholar 

  106. Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology. 2010;156(Pt 6):1589–99.

    CAS  PubMed  Google Scholar 

  107. Bruno ME, Montville TJ. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl Environ Microbiol. 1993;59(9):3003–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol. 2006;157(3):241–7.

    CAS  PubMed  Google Scholar 

  109. Fayol-Messaoudi D, Berger CN, Coconnier-Polter MH, Lievin-Le Moal V, Servin AL. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol. 2005;71(10):6008–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Neeser JR, Granato D, Rouvet M, Servin A, Teneberg S, Karlsson KA. Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology. 2000;10(11):1193–9.

    CAS  PubMed  Google Scholar 

  111. Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A. 1988;85(16):6157–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Johnson JL, Jones MB, Cobb BA: Bacterial capsular polysaccharide prevents the onset of asthma through T cell activation. Glycobiology 2014.

  114. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology. 2000;118(4):724–34.

    CAS  PubMed  Google Scholar 

  115. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    CAS  PubMed  Google Scholar 

  116. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. Human-associated Clostridia strains elicit robust therapeutic response against colitis and allergic diarrhea through manipulation of the GI microbiome and Treg induction.

    CAS  PubMed  Google Scholar 

  117. Papanikolaou MN, Balla M, Papavasilopoulou T, Kofinas G, Karatzas S. Probiotics: an obedient ally or an insidious enemy? Crit Care. 2012;16(6):456.

    PubMed Central  PubMed  Google Scholar 

  118. Morrow LE, Gogineni V, Malesker MA. Synbiotics and probiotics in the critically ill after the PROPATRIA trial. Curr Opin Clin Nutr Metab Care. 2012;15(2):147–50.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

S.V. Lynch reports grants from Janssen Pharmaceuticals. In addition, Dr. Lynch has a patent 61/624 pending. E. K Cope declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Lynch.

Additional information

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cope, E.K., Lynch, S.V. Novel Microbiome-Based Therapeutics for Chronic Rhinosinusitis. Curr Allergy Asthma Rep 15, 9 (2015). https://doi.org/10.1007/s11882-014-0504-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0504-y

Keywords

Navigation