Skip to main content
Log in

Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Past measurements of volatile organic compound (VOC) concentrations from Middle Eastern countries are very few, and this study assesses the concentrations and processes affecting benzene, toluene, ethylbenzene and xylenes (BTEX) in the atmosphere of an urban background area of Jeddah, a coastal city in Saudi Arabia, and their potential for ozone formation. The measurements were carried out for a year (from December 2011 to November 2012) and include hourly BTEX and meteorological parameters. The annual average concentrations of BTEX species were 0.41 ppb for benzene, 1.40 ppb for toluene, 0.49 ppb for ethylbenzene, 1.56 ppb for m,p-xylene and 0.94 ppb for o-xylene. The annual mean benzene level (0.41 ppb, ∼1.31 μg m−3) did not exceed the annual threshold level (5 μg m−3) set by the European Union but still represents a small risk to human health. BTEX showed a seasonal variation, with higher concentrations during the spring and lower concentrations during the autumn. The diurnal variation of BTEX concentrations followed a commonly observed pattern, with two peaks associated with high traffic volumes. m,p-Xylene was the largest contributor to ozone formation potential followed by o-xylene, toluene and benzene. The significantly positive correlation between BTEX compounds as well as the ratio of toluene/benzene (average = 4.03) suggested that vehicle emissions were the major source of BTEX during the whole investigated period. m,p-Xylene-to-ethylbenzene ratios showed an annual mean of 3.18 with little variability during the different seasons indicating that the photochemical age in the study area is relatively young due to the continual fresh emissions experienced in Jeddah city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alghamdi MA, Khoder M, Harrison RM, Hyvärinen A-P, Hussein T, Al-Jeelani H, Abdelmaksoud AS, Goknil M., Shabbaj II, Almehmadi FM, Lihavainen H, Kulmala M (2014) Temporal variations of O3 and NO x in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmos. Environ 94:205–214

  • Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds 1. Alkanes and alkenes. J Phys Chem 26:215–290

    CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NO x . Atmos Environ 34:2063–2101

    CAS  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    CAS  Google Scholar 

  • Badol C, Locoge N, Galloo JC (2008) Using a source–receptor approach to characterize VOC behaviour in a French urban area influenced by industrial emissions part II: source contribution assessment using the Chemical Mass Balance (CMB) model. Sci Tot Environ 389:429–440

    CAS  Google Scholar 

  • Baltrėnas P, Baltrėnaitė E, Šereviĉienė V, Pereira P (2011) Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ Monit Asses 182:115–127

    Google Scholar 

  • Barletta B, Meinardi S, Simpson IJ, Khwaja HA, Blake D, Rowland FS (2002) Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmos Environ 36:3429–3443

    CAS  Google Scholar 

  • Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J (2008) The health effects of nonindustrial indoor air pollution. J Allergy Clin Immun 121:585–591

    CAS  Google Scholar 

  • Borban A, Locoge N, Veillerot M, Galloo JC, Guillermo R (2002) Characterization of NMHCs in a French urban atmosphere: overview of the main sources. Sci TotEnviron 292:177–191

    Google Scholar 

  • Borbon A, Coddeville P, Locoge N, Galloo JC (2004) Characterising sources and sinks of rural VOC in eastern France. Chemosphere 57:931–942

    CAS  Google Scholar 

  • Brocco D, Fratarcangeli R, Lepore L, Petricca M, Ventrone I (1997) Determination of aromatic hydrocarbons in urban air of Rome. Atmos Environ 31:557–566

    CAS  Google Scholar 

  • Buczynska AJ, Krata A, Stranger M, Flavia Locateli Godoi A, Kontozova Deutsch V, Bencs L, Naveau I, Roekens E, Van Grieken R (2009) Atmospheric BTEX concentrations in an area with intensive street traffic. Atmos Environ 43:311–318

    CAS  Google Scholar 

  • Carter WPL (1990) A detailed mechanism for the gas-phase atmospheric reaction of organic compounds. Atmos Environ 24A:481–518

    CAS  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manage 44:881–899

    CAS  Google Scholar 

  • Caselli M, de Gennaro G, Marzocca A, Trizio L, Tutino M (2010) Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere 81:306–311

    CAS  Google Scholar 

  • CDSI (2009) Central department of statistics and information: http://www.cdsi.gov.sa/2010-07-31-07-00-05/cat_view/31-/138----/342---1431-2010

  • Cerqueira M, Pio C, Gomes P, Matos J, Nunes T (2003) Volatile organic compounds in rural atmospheres of central Portugal. Sci Total Environ 313:49–60

    CAS  Google Scholar 

  • Chan CY, Chan LY, Wang XM, Liu YM, Lee SC, Zou SC, Sheng GY, Fu JF (2002) Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. Atmos Environ 36:2039–2047

    CAS  Google Scholar 

  • Chan LY, Chu KW, Zou SC, Chan CY, Wang XM, Barletta B, Blake DR, Guo H, Tsai WY (2006) Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial urban, and industrial suburban atmospheres of the Pearl River Delta (PRD) region of south China. J Geophys Res 111:D11304

    Google Scholar 

  • Choi YJ, Ehrman SH (2004) Investigation of sources of volatile organic carbon in the Baltimore area using highly time-resolved measurements. Atmos Environ 38:775–791

    CAS  Google Scholar 

  • Choi E, Choi K, Yi SM (2011) Non-methane hydrocarbons in the atmosphere of a Metropolitan City and a background site in South Korea: sources and health risk potentials. Atmos Environ 45:7563–7573

    CAS  Google Scholar 

  • Cocheo V, Sacco P, Boaretto C, De Saeger E, Ballesta PP, Skov H et al (2000) Urban benzene and population exposure. Nature 404:141

    CAS  Google Scholar 

  • CPCB (2002) Benzene in air and its effect on human health. Central Pollution Control Board, Parivesh News Letter, 1-32

  • Delfino RJ, Gong H, Linn WS, Hu Y, Pellizzari ED (2003) Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J Expo Sci Env Epid 13:348–363

    CAS  Google Scholar 

  • Demir S, Saral A, Ertürk F, Kuzu SL, Goncaloğlu BI, Demir G (2011) Effect of diurnal changes in VOC source strengths on performances of receptor models. Environ Sci Pollut Res Int 19:1503–1514

    Google Scholar 

  • Derwent RG, Jenkin ME, Saunders SM, Pilling MJ (1998) Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos Environ 32:2429–2441

    CAS  Google Scholar 

  • Derwent RG, Davies TJ, Delaney M, Dollard GJ, Field RA, Dumitrean P et al (2000) Analysis and interpretation of the continuous hourly monitoring data for 26 C2–C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmos Environ 34:297–312

    CAS  Google Scholar 

  • Derwent R, Jenkin M, Saunders S, Pilling M, Simmonds P, Passant N, Dollard G, Dumitrean P, Kent A (2003) Photochemical ozone formation in north west Europe and its control. Atmos Environ 37:1983–1991

    CAS  Google Scholar 

  • Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88:25–35

    CAS  Google Scholar 

  • Duce R, Mohnen VA, Zimmerman PR, Grosjean D, Cautreels WJ, Chatfield R, Jaenicke R, Ogren JA, Pellizzari ED, Wallace GT (1983) Organic material in global troposphere. Rev Geophys Space Phys 21:921–952

    CAS  Google Scholar 

  • Edgerton SA, Holdren MW, Smith DL (1989) Inter-urban comparison of ambient volatile organic compound concentrations in US cities. J Air Pollut Control Assoc 39:729–732

    CAS  Google Scholar 

  • Elbir T, Cetin B, Çetin E, Bayram A, Odabasi M (2007) Characterization of volatile organic compounds (VOCs) and their sources in the air of İzmir, Turkey. Environ Monit Assess 133:149–160

    CAS  Google Scholar 

  • European Commission, Environment (2013) http://www.ec.Europa.eu/environment /air/quality/standards.htm. Accessed 23 May 2013

  • Filella I, Peñuelas J (2006) Daily, weekly and seasonal relationships among VOCs, NO x and O3 in a semi-urban area near Barcelona. J Atmos Chem 54:189–201

    CAS  Google Scholar 

  • Gee IL, Sollars CJ (1998) Ambient air levels of volatile organic compounds in Latin American and Asian cities. Chemosphere 36:2497–2506

    CAS  Google Scholar 

  • Geng F, Zhao C, Tang X, Lu G, Tie X (2007) Analysis of ozone and VOCs measured in Shanghai: a case study. Atmos Environ 41:989–1001

    CAS  Google Scholar 

  • Grosjean E, Rasmussen RA, Grosjean D (1998) Ambient levels of gas phase pollution in Porto Alegre, Brazil. Atmos Environ 32:3371–3379

    CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    CAS  Google Scholar 

  • Guo H, Lee SC, Loure PKK, Ho KF (2004a) Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere 57:1363–1372

    CAS  Google Scholar 

  • Guo H, Wang T, Louie PKK (2004b) Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environ Pollut 129:489–496

    CAS  Google Scholar 

  • Guo H, So K, Simpson I, Barletta B, Meinardi S, Blake D (2007) C1–C8 volatile organic compounds in the atmosphere of Hong Kong: overview of atmospheric processing and source apportionment. Atmos Environ 41:1456–1472

    CAS  Google Scholar 

  • Hartmann R, Voght U, Baumbach G, Seyfioglu R, Muezzinoglu A (1997) Results of emission and ambient air measurements of VOC in Izmir. Environ Res Forum 7–8:107–112

    Google Scholar 

  • Heeb NV, Forss AM, Bach C (1999) Fast and quantitative measurement of benzene, toluene and C2-benzenes in automotive exhaust during transient engine operation with and without catalytic exhaust gas treatment. Atmos Environ 33:205–215

    CAS  Google Scholar 

  • Heeb NV, Forss AM, Bach C, Reimann S, Herzog A, Jäckle HW (2000) A comparison of benzene, toluene and C2-benzene mixing ratios in automotive exhaust and in the suburban atmosphere during the introduction of catalytic converter technology to the Swiss Car Fleet. Atmos Environ 34:3103–3116

    CAS  Google Scholar 

  • Ho KF, Lee SC, Guo H, Tsai WY (2004) Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Tot Environ 322:155–166

    CAS  Google Scholar 

  • Hong YJ, Jeng HA, Gau YY, Lin C, Lee IL (2006) Distributions of volatile organic compounds in ambient air of Kaohsiung, Taiwan. Environ Monit Assess 119:43–56

    CAS  Google Scholar 

  • Hoque RR, Khillare PS, Agarwal T, Shridhar V, Balachandran S (2008) Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci Tot Environ 392:30–40

    CAS  Google Scholar 

  • Hsieh CC, Tsai JH (2003) VOC concentration characteristics in Southern Taiwan. Chemosphere 50:545–556

    CAS  Google Scholar 

  • Hsieh LT, Yang HH, Chen HW (2006) Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan. J Hazard Mater 128:106–115

    CAS  Google Scholar 

  • Hsieh LT, Tsai CH, Chang JE, Tsao MC (2011a) Decomposition of methyl tert-butyl ether by adding hydrogen in a cold plasma reactor. Aerosol Air Qual Res 11:265–281

    CAS  Google Scholar 

  • Hsieh LT, Wang YF, Yang HH, Mi HH (2011b) Measurements and correlations of MTBE and BETX in traffic tunnels. Aerosol Air Qual Res 11:763–775

    CAS  Google Scholar 

  • Hung-Lung C, Jiun-Horng T, Shih-Yu C, Kuo-Hsiung L, Sen-Yi M (2007) VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmos Environ 41:1848–1860

    Google Scholar 

  • Jenkin ME, Saunders SM, Wagner V, Pilling MJ (2003) Protocol for the development of the master chemical mechanism, MCM v3 (part B): tropospheric degradation of aromatic volatile organic compounds. Atmos Chem Phys 3:191–193

    Google Scholar 

  • Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166:17–26

    CAS  Google Scholar 

  • Karl T, Harley P, Emmons L, Thornton B, Guenther A, Basu C, Turnipseed A, Jardine K (2010) Revisiting the dry depositional sink of oxidized organic vapors to vegetation. Geophys Res Abstr 12 (EGU2010-6255, 2010, EGU General Assembly 2010)

  • Kerbachi R, Boughedaouib M, Bounouac L, Keddama M (2006) Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos Environ 40:3995–4003

    CAS  Google Scholar 

  • Khamdan SAA, Al Madany IM, Buhussain E (2009) Temporal and spatial variations of the quality of ambient air in the Kingdom of Bahrain during 2007. Environ Monit Assess 154:241–252

    CAS  Google Scholar 

  • Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen L, Maciejczyk P (2012) Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res 3:331–340

    CAS  Google Scholar 

  • Khoder MI (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos Environ 41:554–566

    CAS  Google Scholar 

  • Kinney PL, Chillrud SN, Ramstrom S, Ross J, Spengler JD (2002) Exposure to multiple air toxics in New York City. Environ Health Perspect 110:539–546

    CAS  Google Scholar 

  • Kostiainen R (1995) Volatile organic compounds in the indoor air of normal and sick houses. Atmos Environ 29:693–702

    CAS  Google Scholar 

  • Kumar A, Tyagi SK (2006) Benzene and toluene profiles in ambient air of Delhi as determine by active sampling and GC analyses. J Scie Ind Res 65:252–257

    CAS  Google Scholar 

  • Kuntasal ÖO (2005) Organic composition of particles and gases in the Ankara atmosphere. Unpublished Ph.D. thesis, METU, Ankara

  • Lai CH, Chen KS, Ho YT, Peng YP, Chou YM (2005) Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan. Atmos Environ 39:4543–4559

    CAS  Google Scholar 

  • Lan TTN, Minh PA (2013) BTEX pollution caused by motorcycles in the megacity of HoChiMinh. J Environ Sci 25:348–356

    Google Scholar 

  • Lanz VA, Buchmann B, Hueglin C, Locher R, Reimann S, Staehelin J (2008) Factor analytical modeling of C2–C7 hydrocarbon sources at an urban background site in Zurich (Switzerland): changes between 1993–1994 and 2005–2006. Atmos Chem Phys Discuss 8:907–955

    Google Scholar 

  • Latella A, Stani G, Cobelli L, Duane M, Junninen H, Astorga C, Larsen BR (2005) Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. J Chromatogr A 1071:29–39

    CAS  Google Scholar 

  • Lee SC, Chiu MY, Ho KF, Zou SC, Wang X (2002) Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48:375–382

    CAS  Google Scholar 

  • Li R, Kalenge S, Hopke PK, Leboulf R, Rossner A, Benedict A (2011) Source appointment of benzene downwind of a major point source. Atmos Pollut Res 2:138–143

    Google Scholar 

  • Liu J, Mu Y, Zhang Y, Zhang Z, Wang X, Liu Y, Sun Z (2009) Atmospheric levels of the BTEX compounds during the 2008 Olympic Games in the urban area of Beijing. Sci Tot Environ 408:109–116

    CAS  Google Scholar 

  • Matysik S, Ramadan AB, Schlink U (2010) Spatial and temporal variation of outdoor and indoor exposure of volatile organic compounds in Greater Cairo. Atmos Pollut Res 1:94–101

    CAS  Google Scholar 

  • Miller L, Lemke LD, Xu X, Molaroni SM, You H, Wheeler AJ, Booza J, Grgicak-Mannion A, Krajenta R, Graniero P, Krouse H, Lamerato L, Raymond D, Reiners J Jr, Weglicki L (2010) Intra-urban correlation and spatial variability of air toxics across as international airshed in Detroit, Michigan (USA) and Windsor, Ontario (Canada). Atmos Environ 44:1162–1174

    CAS  Google Scholar 

  • Miller L, Xu X, Grgicak-Mannion A, Brook J, Wheeler A (2012) Multi season, multi-year concentrations and correlations amongst the BTEX group of VOCs in an urbanized industrial city. AtmosEnviron 61:305–315

    CAS  Google Scholar 

  • Monod A, Sive BC, Avino P, Chen T, Blake DR, Rowland FS (2001) Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ 35:135–149

    CAS  Google Scholar 

  • Moschonas N, Glavas S (1996) C3–C10 hydrocarbons in the atmosphere of Athens, Greece. Atmos Environ 30:2769–2772

    CAS  Google Scholar 

  • Muezzinoglu A, Odabasi M, Onat L (2001) Volatile organic compounds in the air of Izmir, Turkey. Atmos Environ 35:753–760

    CAS  Google Scholar 

  • Mukund R, Kelly TJ, Spicer CW (1996) Source attribution of ambient air toxics and other VOCs in ColombusOhio. Atmos Environ 30:3457–3470

    CAS  Google Scholar 

  • Na K, Kim YP (2001) Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmos Environ 35:2603–2614

    CAS  Google Scholar 

  • Na K, Kim YP, Moon KC (2003) Diurnal characteristics of volatile organic compounds in the Seoul atmosphere. Atmos Environ 37:733–742

    CAS  Google Scholar 

  • Na K, Kim YP, Moon I, Moon KC (2004) Chemical composition of VOC major emission sources in the Seoul atmosphere. Chemosphere 55:585–594

    CAS  Google Scholar 

  • Na K, Moon KC, Kim YP (2005) Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmos Environ 39:5517–5524

    CAS  Google Scholar 

  • NAEI (2012) Emissions of Air Quality Pollutants, 1970–2011. National Atmospheric Emissions Inventory

  • Nelson PF, Quigley SM (1982) Non-methane hydrocarbons in the atmosphere of Sydney, Australia. Environ Sci Technol 16:650–655

    CAS  Google Scholar 

  • Nelson PF, Quigley SM (1984) The hydrocarbon composition of exhaust emitted from gasoline fueled vehicles. Atmos Environ 18:79–87

    CAS  Google Scholar 

  • Nelson PF, Quigley SM, Smith MY (1983) Sources of atmospheric previous term hydrocarbons next term in Sydney: a quantitative determination using a source reconciliation technique. Atmos Environ 17:439–449

    CAS  Google Scholar 

  • Otto D, Molhave L, Rose G, Hudnell HK, House D (1990) Neurobehavioral and sensory irritant effects of controlled exposure to a complex mixture of volatile organic compounds. Neuro Toxicol Teratol 12:649–652

    CAS  Google Scholar 

  • Pankow JF, Luo W, Bender DA, Isabelle LM, Hollingsworth JS, Chen C, Asher WE, Zogorski JS (2003) Concentration and co-occurrence correlations of 88 volatile organic compounds (VOC) in the ambient air of 13 semi-rural tourban locations in the United States. AtmosEnviron 37:5023–5046

    CAS  Google Scholar 

  • Parrish DD, Stohl A, Forster C, Atlas EL, Blake DR, Goldan PD, Kuster WC, de Gouw JA (2007) Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J Geophys Res 112(D10):34–50

    Google Scholar 

  • Paul J (1997) Improved air quality on Turkish roads: fuels and exhaust gas treatment. Environl Res Forum 7–8:145–152

    Google Scholar 

  • Perry R, Gee IL (1995) Vehicle emissions in relation to fuel composition. Sci Tot Environ 169:149–156

    CAS  Google Scholar 

  • Pratt GC, Palmer K, Wu CY, Oliaei F, Hollerach C, Fenske MJ (2000) An assessment of air toxics in Minnesota. Environ Health Perspect 108:815–825

    CAS  Google Scholar 

  • Rappenglueck B, Fabian P (1999) Nonmethane previous term hydrocarbons next term (NMHC) in the greater Munich area, Germany. Atmos Environ 33:3843–3857

    Google Scholar 

  • Schifter I, Magdaleno M, Díaz L, Krüger B, León J, Palmerín ME, Casas R, Melgarejo A, López-Salinas E (2002) Contribution of the gasoline distribution cycle to volatile organic compound emissions in the metropolitan area of Mexico City. J Air Waste Manage Assoc 52:535–541

    CAS  Google Scholar 

  • Suh HH, Bahadori T, Vallarino J, Spengler JD (2000) Criteria air pollutants and toxic air pollutants. Environ Health Perspect 108:625–633

    CAS  Google Scholar 

  • Sweet CW, Vermette SJ (1992) Toxic volatile organic compounds in urban air in Illinois. Environ Sci Technol 26:165

    CAS  Google Scholar 

  • Tang JH, Chan LY, Chan CY, Li YS, Chang CC, Liu SC et al (2007) Characteristics and diurnal variations of NMHCs at urban, suburban and rural sites in the Pearl River Delta and a remote site in South China. Atmos Environ 41:8620–8632

    CAS  Google Scholar 

  • Tong L, Liao X, Chen J, Xiao H, Xu L, Zhang F, Niu Z, Yu J (2013) Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. Environ Sci Pollut Res 20:2603–2615

    CAS  Google Scholar 

  • Tonooka Y, Kannari A, Higashino H, Murano K (2001) NMVOCs and CO emission inventory in East Asia. Water Air Soil Pollut 130:1–4

    Google Scholar 

  • Truc VTQ, Oanh NTK (2007) Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmos Environ 41:7685–7697

    CAS  Google Scholar 

  • Tsujino Y, Kuwata K (1993) Sensitive flame ionization detector for the determination of trace of atmospheric hydrocarbons by capillary gas chromatography. J Chromatogr 642:383–388

    CAS  Google Scholar 

  • US EPA (2005) Guidelines for carcinogenic risk assessment. Risk Assessment Forum, EPA/630/P-03/001F, March 2005

  • US EPA (2012) Benzene. http://www.epa.gov/ttn/atw/hlthef/benzene.html

  • Watson JG, Chow JC, Fujita EM (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35:1567–1584

    CAS  Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, 2nd edn. World Health Organisation, Copenhagen

    Google Scholar 

  • Williams J, Koppmann R (2007) Volatile organic compounds in the atmosphere: an overview. In: Volatile organic compounds in the atmosphere. Blackwell Publishing Ltd., Oxford, UK

  • Yamamoto N, Okayasu H, Murayama S, Mori S, Hunahashi K, Suzuki K (2000) Measurement of volatile organic compounds in the urban atmosphere of Yokohama, Japan, by an automated gas chromatographic system. Atmos Environ 34:4441–4446

    CAS  Google Scholar 

  • Yang KL, Ting CC, Wang JL, Wingenter OW, Chan CC (2005) Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmos Environ 39:3221–3230

    CAS  Google Scholar 

  • Yassaa N, Brancaleoni E, Frattoni M, Ciccioli P (2006) Isomeric Analysis of BTEXs in the atmosphere using b-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry. Chemosphere 63:502–508

    CAS  Google Scholar 

  • Yokelson RJ, Christian TJ, Karl TG, Guenther A (2008) The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmos Chem Phys 8:3509–3527

    CAS  Google Scholar 

  • Yuan B, Shao M, Lu S, Wang B (2010) Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos Environ 44:1919–1926

    CAS  Google Scholar 

  • Yurdakul S, Civan M, Tuncel G (2013) Volatile organic compounds in suburban Ankara atmosphere, Turkey: sources and variability. Atmos Res 120–121:298–311

    Google Scholar 

  • Zalel A, Yuval BMD (2008) Revealing source signatures in ambient BTEX concentrations. Environ Pollut 156:553–562

    CAS  Google Scholar 

  • Zhang J, Sun Y, Wu F, Sun J, Wang Y (2013) The characteristics, seasonal variation and source apportionment of VOCs at Gongga Mountain, China. Atmos Environ in press

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), Jeddah, under grant no. 1220/430. The authors therefore acknowledge with thanks DSR and KAU for their technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Harrison.

Additional information

Highlights

• One year of continuously collected BTEX data is analysed.

• Concentrations are highest in spring and lowest in autumn.

• The main source is road traffic

• The potential for ozone formation is analysed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, M.A., Khoder, M., Abdelmaksoud, A.S. et al. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual Atmos Health 7, 467–480 (2014). https://doi.org/10.1007/s11869-014-0263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-014-0263-x

Keywords

Navigation