Skip to main content

Advertisement

Log in

Treatment of Relapsed/Refractory Acute Myeloid Leukemia

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Approximately 40–45% of younger and 10–20% of older adults with acute myeloid leukemia (AML) will be cured with current standard chemotherapy. The outlook is particularly gloomy for patients with relapsed and/or refractory disease (cure rates no higher than 10%). Allogeneic hematopoietic stem cell transplantation (HSCT), the only realistic hope of cure for these patients, is an option for only a minority. In recent years, much has been learned about the genomic and epigenomic landscapes of AML, and the clonal architecture of both de novo and secondary AML has begun to be unraveled. These advances have paved the way for rational drug development as new “drugable” targets have emerged. Although no new drug has been approved for AML in over four decades, with the exception of gemtuzumab ozogamycin, which was subsequently withdrawn, there is progress on the horizon with the possible regulatory approval soon of agents such as CPX-351 and midostaurin, the Food and Drug Administration “breakthrough” designation granted to venetoclax, and promising agents such as the IDH inhibitors AG-221 and AG-120, the smoothened inhibitor glasdegib and the histone deacetylase inhibitor pracinostat. In our practice, we treat most patients with relapsed/refractory AML on clinical trials, taking into consideration their prior treatment history and response to the same. We utilize targeted sequencing of genes frequently mutated in AML to identify “actionable” mutations, e.g., in FLT3 or IDH1/2, and incorporate small-molecule inhibitors of these oncogenic kinases into our therapeutic regimens whenever possible. In the absence of actionable mutations, we rationally combine conventional agents with other novel therapies such as monoclonal antibodies and other targeted drugs. For fit patients up to the age of 65, we often use high-dose cytarabine-containing backbone regimens. For older or unfit patients, we prefer hypomethylating agent-based therapy. Finally, all patients with relapsed/refractory AML are evaluated for allogeneic HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  2. Rowe JM, Tallman MS. How I treat acute myeloid leukemia. Blood. 2010;116:3147–56.

    Article  CAS  PubMed  Google Scholar 

  3. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121:1077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ravandi F, Estey EH, Appelbaum FR, Lo-Coco F, Schiffer CA, Larson RA, Burnett AK, Kantarjian HM. Gemtuzumab ozogamicin: time to resurrect? J Clin Oncol. 2012;30:3921–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, Stone RM, Bixby D, Kolitz JE, Schiller GJ, Wieduwilt MJ, Ryan D, Hoering A, Chiarella M, Louie AC, Medeiros BC. Final results of a phase III randomized trial of CPX-351 versus 7 + 3 in older patients with newly diagnosed high risk (secondary) AML. J Clin Oncol. 2016;34:7000. Results of the pivotal trial of CPX-351 in older patients with newly diagnosed secondary AML showing a survival benefit for this agent.

    Google Scholar 

  6. •• Stone RM, Mandrekar S, Sanford BL, Geyer S, Bloomfield CD, Dohner K, Thiede C, Marcucci G, Lo-Coco F, Klisovic RB, Wei A, Sierra J, Sanz MA, Brandwein JM, de Witte T, Niederwieser D, Appelbaum FR, Medeiros BC, Tallman MS, Krauter J, Schlenk RF, Ganser A, Serve H, Ehninger G, Amadori S, Larson RA, Dohner H. The multi-kinase inhibitor midostaurin (M) prolongs survival compared with placebo (P) in combination with daunorubicin (D)/cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) patients (pts) age 18-60 with FLT3 mutations (muts): an international prospective randomized (rand) P-controlled double-blind trial (CALGB 10603/RATIFY [alliance]). Blood. 2015;126:6. Results of a cooperative group study that showed a survival benefit for the addition of midostaurin to standard chemotherapy and as maintenance in younger, newly diagnosed patients with FLT3-mutated AML.

    Article  Google Scholar 

  7. Hawtin RE, Stockett DE, Byl JA, McDowell RS, Nguyen T, Arkin MR, Conroy A, Yang W, Osheroff N, Fox JA. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One. 2010;5:e10186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Walsby EJ, Coles SJ, Knapper S, Burnett AK. The topoisomerase II inhibitor voreloxin causes cell cycle arrest and apoptosis in myeloid leukemia cells and acts in synergy with cytarabine. Haematologica. 2011;96:393–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lancet JE, Roboz GJ, Cripe LD, Michelson GC, Fox JA, Leavitt RD, Chen T, Hawtin R, Craig AR, Ravandi F, Maris MB, Stuart RK, Karp JE. A phase 1b/2 study of vosaroxin in combination with cytarabine in patients with relapsed or refractory acute myeloid leukemia. Haematologica. 2015;100:231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Ravandi F, Ritchie EK, Sayar H, Lancet JE, Craig MD, Vey N, Strickland SA, Schiller GJ, Jabbour E, Erba HP, Pigneux A, Horst HA, Recher C, Klimek VM, Cortes J, Roboz GJ, Odenike O, Thomas X, Havelange V, Maertens J, Derigs HG, Heuser M, Damon L, Powell BL, Gaidano G, Carella AM, Wei A, Hogge D, Craig AR, Fox JA, Ward R, Smith JA, Acton G, Mehta C, Stuart RK, Kantarjian HM. Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2015;16:1025–36. Results of the VALOR trial, one of the largest trials ever conducted in the salvage setting in AML, comparing vosaroxin plus cytarabine to placebo plus cytarabine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravandi F, Ritchie EK, Sayar H, Lancet JE, Craig M, Vey N, Strickland SA, Schiller GJ, Jabbour EJ, Erba HP, Pigneux A, Horst HA, Recher C, Klimek VM, Cortes JE, Roboz GJ, Craig AR, Ward R, Smith J, Kantarjian HM, Stuart RK. Durable overall survival benefit in patients ≥60 Years with relapsed or refractory AML treated with vosaroxin/cytarabine vs placebo/cytarabine: updated results from the valor trial. Blood. 2016;128:903.

    Google Scholar 

  12. • Daver NG, Kantarjian HM, Garcia-Manero G, Jabbour EJ, Borthakur G, Pierce SR, Vaughan K, Ning J, Gonzalez G, Pemmaraju N, Kadia TM, Konopleva MY, Andreeff M, Dinardo CD, Cortes JE, Ward R, Craig AR, Ravandi F. Phase I/Ii study of vosaroxin and decitabine in newly diagnosed older patients (pts) with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Haematologica. 2016;S505 Promising results with the combination of decitabine and vosaroxin in older, newly diagnosed patients with AML.

  13. Dennis M, Russell N, Hills RK, Hemmaway C, Panoskaltsis N, McMullin MF, Kjeldsen L, Dignum H, Thomas IF, Clark RE, Milligan D, Burnett AK. Vosaroxin and vosaroxin plus low-dose Ara-C (LDAC) vs low-dose Ara-C alone in older patients with acute myeloid leukemia. Blood. 2015;125:2923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, Komrokji R, Solomon SR, Kolitz JE, Cooper M, Yeager AM, Louie AC, Feldman EJ. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014;123:3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cortes JE, Goldberg SL, Feldman EJ, Rizzeri DA, Hogge DE, Larson M, Pigneux A, Recher C, Schiller G, Warzocha K, Kantarjian H, Louie AC, Kolitz JE. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer. 2015;121(2):234–42.

  16. Bose P, Simmons GL, Grant S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin Investig Drugs. 2013;22:723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res. 1997;57:3375–80.

    CAS  PubMed  Google Scholar 

  18. Karp JE, Ross DD, Yang W, Tidwell ML, Wei Y, Greer J, Mann DL, Nakanishi T, Wright JJ, Colevas AD. Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin Cancer Res. 2003;9:307–15.

    CAS  PubMed  Google Scholar 

  19. Zeidner JF, Foster MC, Blackford AL, Litzow MR, Morris LE, Strickland SA, Lancet JE, Bose P, Levy MY, Tibes R, Gojo I, Gocke CD, Rosner GL, Little RF, Wright JJ, Doyle LA, Smith BD, Karp JE. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7 + 3) in newly diagnosed acute myeloid leukemia. Haematologica. 2015;100:1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. •• Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, Izon DJ, Zuber J, Rappaport AR, Herold MJ, Alexander WS, Lowe SW, Robb L, Strasser A. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26:120–5. Elegant preclinical work showing the critical role of MCL-1 in the development and maintenance of AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Del Gaizo Moore V, Letai A. BH3 profiling—measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 2013;332(2):202–5.

  22. Bose P, Grant S. Orphan drug designation for pracinostat, volasertib and alvocidib in AML. Leuk Res. 2014;38:862–5.

    Article  PubMed  Google Scholar 

  23. • Issa JP, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, Daver N, Chung W, Naim S, Taverna P, Oganesian A, Hao Y, Lowder JN, Azab M, Kantarjian H. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015;16:1099–110. Phase I results with a novel, second generation hypomethylating agent, guadecitabine, in MDS and AML.

    Article  CAS  PubMed  Google Scholar 

  24. Roboz GJ, Ravandi F, Kropf P, Yee K, O’Connell C, Griffiths EA, Stock W, Garcia-Manero G, Jabbour EJ, Daver N, Pemmaraju N, Issa JP, Walsh K, Rizzieri D, Lunin S, Naim S, Hao Y, Azab M, Kantarjian HM. Comparison of efficacy and safety of 5-day and 10-day schedules of SGI-110, a novel subcutaneous (SC) hypomethylating agent (HMA), in the treatment of relapsed/refractory acute myeloid leukemia (r/r AML). Ann Oncol. 2014;25(suppl_4):iv327–39.

    Article  Google Scholar 

  25. Daver N, Kantarjian HM, Roboz GJ, Kropf PL, Yee KWL, O’Connell C, Griffiths EA, Jabbour EJ, Stock W, Walsh K, Rizzieri DA, Berdeja JG, Su XY, Azab M, Issa JP. Long term survival and clinical complete responses of various prognostic subgroups in 103 relapsed/refractory acute myeloid leukemia (r/r AML) patients treated with guadecitabine (SGI-110) in phase 2 studies. Blood. 2016;128:904.

    Article  CAS  Google Scholar 

  26. Kantarjian HM, Roboz GJ, Kropf PL, KWL Y, O’Connell C, Tibes R, Walsh K, Podeltsev NA, Griffiths EA, Jabbour EJ, Garcia-Manero G, Rizzieri DA, Stock W, Savona MR, Rosenblat T, Berdeja JG, Wilson L, Lowder JN, Taverna P, Hao Y, Azab M, Issa JP. Comparison of efficacy and safety results in 103 treatment-naïve acute myeloid leukemia (TN-AML) patients not candidates for intensive chemotherapy using 5-day and 10-day regimens of guadecitabine (SGI-110), a novel hypomethylating agent (HMA). Blood. 2015;126:458.

    Google Scholar 

  27. Yee K, Daver N, Kropf P, Tibes R, O’Connell C, Roboz G, Walsh K, Pemmaraju N, Rosenblat T, Berdeja J, Lunin S, Chung W, Issa JP, Naim S, Taverno P, Hao Y, Azab M, Kantarjian H. Results of a randomized multicenter phase 2 study of a 5-day regimen of SGI-110, a novel hypomethylating agent, in treatment naïve elderly acute myeloid leukemia not eligible for intensive therapy. 2014:S647-S647.

  28. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12:465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367:647–57.

    Article  CAS  PubMed  Google Scholar 

  30. Devaraj SG, Fiskus W, Shah B, Qi J, Sun B, Iyer SP, Sharma S, Bradner JE, Bhalla KN. HEXIM1 induction is mechanistically involved in mediating anti-AML activity of BET protein bromodomain antagonist. Leukemia. 2016;30:504–8.

    Article  CAS  PubMed  Google Scholar 

  31. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, Taussig DC, Rezai K, Roumier C, Herait P, Kahatt C, Quesnel B, Michallet M, Recher C, Lokiec F, Preudhomme C, Dombret H. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3:e186–95.

    Article  PubMed  Google Scholar 

  32. Fiskus W, Sharma S, Qi J, Shah B, Devaraj SG, Leveque C, Portier BP, Iyer SP, Bradner JE, Bhalla KN. BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther. 2014.

  33. Fiskus W, Sharma S, Qi J, Valenta JA, Schaub LJ, Shah B, Peth K, Portier BP, Rodriguez M, Devaraj SG, Zhan M, Sheng J, Iyer SP, Bradner JE, Bhalla KN. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol Cancer Ther. 2014;13:1142–54.

    Article  CAS  PubMed  Google Scholar 

  34. •• Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A, Bullinger L, Pollock RM, Richon VM, Kung AL, Armstrong SA. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20:66–78. Preclinical work identifying DOT1L as a novel therapeutic target in MLL-rearranged leukemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20:53–65. Preclinical activity of a novel, small-molecule antagonist of DOT1L against MLL-rearranged leukemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Jongen-Lavrencic M, Altman JK, Dohner H, Thomson B, Blakemore SJ, Daigle S, Fine G, Waters NJ, Krivstov AV, Koche R, Armstrong SA, Ho PT, Lowenberg B, Tallman MS. A phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in adults with relapsed or refractory leukemia: safety, clinical activity. Exposure Target Inhibition Blood. 2015;126:2547.

    Google Scholar 

  37. Rau RE, Rodriguez BA, Luo M, Jeong M, Rosen A, Rogers JH, Campbell CT, Daigle SR, Deng L, Song Y, Sweet S, Chevassut T, Andreeff M, Kornblau SM, Li W, Goodell MA. DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood. 2016;128:971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33. Important paper highlighting the prognostic importance of DNMT3A mutations in AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero Jr RA, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Muller-Tidow C, Petrie K, Zelent A. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med. 2012;18:605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SG, Liu K, Iyer SP, Bearss D, Bhalla KN. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia. 2014;28:2155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Somervaille T, Salamero O, Montesinos P, Willekens C, Simon JAP, Pigneux A, Recher C, Popat R, Molinero C, Mascaro C, Maes T, Bosch F. Safety, phamacokinetics (PK), pharmacodynamics (PD) and preliminary activity in acute leukemia of Ory-1001, a first-in-class inhibitor of lysine-specific histone demethylase 1A (LSD1/KDM1A): initial results from a first-in-human phase 1 study. Blood. 2016;128:4060.

    Google Scholar 

  42. • Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H, Karanes C, Theobald M, Bennett JM, Sherman ML, Berger MS, Eten CB, Loken MR, van Dongen JJ, Bernstein ID, Appelbaum FR, Mylotarg Study Group. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–54. The study that led to the original FDA approval of gemtuzumab ozogamycin for AML.

    Article  CAS  PubMed  Google Scholar 

  43. • Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, Larson RA, Erba HP, Stiff PJ, Stuart RK, Walter RB, Tallman MS, Stenke L, Appelbaum FR. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60. The study that led to the withdrawal of gemtuzumab ozogamycin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Burnett AK, Hills RK, Milligan D, Kjeldsen L, Kell J, Russell NH, Yin JA, Hunter A, Goldstone AH, Wheatley K. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29:369–77. Demonstration that the survival advantage with gemtuzumab ozogamycin is restricted to patients with favorable and non-adverse cytogenetics.

    Article  CAS  PubMed  Google Scholar 

  45. •• Burnett AK, Russell NH, Hills RK, Kell J, Freeman S, Kjeldsen L, Hunter AE, Yin J, Craddock CF, Dufva IH, Wheatley K, Milligan D. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30:3924–31. Phase III trial from the UK demonstrating improved survival with the addition of gemtuzumab ozogamycin to chemotherapy in older patients with newly diagnosed AML.

    Article  CAS  PubMed  Google Scholar 

  46. •• Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN, Legrand O, Thomas X, Turlure P, Reman O, de Revel T, Gastaud L, de Gunzburg N, Contentin N, Henry E, Marolleau JP, Aljijakli A, Rousselot P, Fenaux P, Preudhomme C, Chevret S, Dombret H. Acute Leukemia French Association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379:1508–16. Randomized phase III trial from France demonstrating improved survival with the addition of gemtuzumab ozogamycin to chemotherapy in patients with newly diagnosed AML.

    Article  CAS  PubMed  Google Scholar 

  47. • Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, Estey EH, Dombret H, Chevret S, Ifrah N, Cahn JY, Recher C, Chilton L, Moorman AV, Burnett AK. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15:986–96. Meta-analysis (including the negative SWOG trial) documenting the survival advantage conferred by the addition of gemtuzumab ozogamycin to induction chemotherapy in patients with AML without adverse cytogenetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Stein AM, Walter RB, Erba HP, Fathi AT, Advani AS, Lancet JE, Ravandi F, Kovacsovics TJ, DeAngelo DJ, Bixby D, Faderl S, Jillela AP, O’Meara MM, Zhao B, Stein EM. A phase 1 trial of SGN-CD33A as monotherapy in patients with CD33-positive acute myeloid leukemia (AML). Blood. 2015;126:324. Single-agent data with a novel, CD33 antibody-drug conjugate in relapsed/refractory AML.

    Google Scholar 

  49. Fathi AT, Erba HP, Lancet JE, Stein EM, Ravandi F, Faderl S, Walter RB, Advani AS, DeAngelo DJ, Kovacsovics TJ, Jillela AP, Bixby D, Levy M, O’Meara MM, Ho P, Stein AS. Vadastuximab talirine plus hypomethylating agents: a well-tolerated regimen with high remission rate in frontline older patients with acute myeloid leukemia (AML). Blood. 2016;128:591.

    Google Scholar 

  50. Erba HP, Levy M, Vasu S, Stein AS, Fathi AT, Maris MB, Advani AS, Faderl S, Smith SE, Wood B, Walter RB, Yang J, Donnellan WB, Feldman EJ, Voellinger JL, Ravandi F. A phase 1b study of vadastuximab talirine in combination with 7 + 3 induction therapy for patients with newly diagnosed acute myeloid leukemia (AML). Blood. 2016;128:211.

    Google Scholar 

  51. Yang J, Ravandi F, Advani AS, Vasu S, Walter RB, Faderl S, Stein AS, Erba HP, Fathi AT, Donnellan WB, Levy MY, Smith SE, Wood B, Feldman EJ, Voellinger JL, Maris MB. A phase 1b study of vadastuximab talirine as maintenance and in combination with standard consolidation for patients with acute myeloid leukemia (AML). Blood. 2016;128:340.

    Google Scholar 

  52. • Krupka C, Kufer P, Kischel R, Zugmaier G, Bogeholz J, Kohnke T, Lichtenegger FS, Schneider S, Metzeler KH, Fiegl M, Spiekermann K, Baeuerle PA, Hiddemann W, Riethmuller G, Subklewe M. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–65. Preclinical activity of a novel, CD33-targeted BiTE® in AML.

    Article  CAS  PubMed  Google Scholar 

  53. • Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, Sinclair AM, Kischel R, Frankel SR, Walter RB. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61. Preclinical activity of a novel, CD33-targeted BiTE® in AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Friedrich M, Henn A, Raum T, Bajtus M, Matthes K, Hendrich L, Wahl J, Hoffmann P, Kischel R, Kvesic M, Slootstra JW, Baeuerle PA, Kufer P, Rattel B. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13:1549–57. Preclinical activity of a novel, CD33-targeted BiTE® in AML.

    Article  CAS  PubMed  Google Scholar 

  55. Harrington KH, Gudgeon CJ, Laszlo GS, Newhall KJ, Sinclair AM, Frankel SR, Kischel R, Chen G, Walter RB. The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk. PLoS One. 2015;10:e0135945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Kohnke T, Vick B, Jeremias I, Metzeler KH, Altmann T, Schneider S, Fiegl M, Spiekermann K, Bauerle PA, Hiddemann W, Riethmuller G, Subklewe M. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2016;30:484–91.

    Article  CAS  PubMed  Google Scholar 

  57. • Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG, Gao F, Eades WC, Bonvini E, Chichili GR, Moore PA, Johnson S, Collins L, DiPersio JF. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood. 2016;127:122–31. Preclinical paper introducing the DART technology for therapy of AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sweet K, Pemmaraju N, Lane AA, Stein AM, Vasu S, Blum W, Rizzieri D, Wang ES, Rowinsky EK, Szarek M, Brooks CL, Disalvatore S, Liu D, Duvic M, Schwartz J, Konopleva M. Lead-in stage results of a pivotal trial of SL-401, an interleukin-3 receptor (IL-3R) targeting biologic, in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN) or acute myeloid leukemia (AML). Blood. 2015;126:3795.

    Google Scholar 

  59. DiNardo CD, Ravandi F, Agresta S, Konopleva M, Takahashi K, Kadia T, Routbort M, Patel KP, Mark B, Pierce S, Garcia-Manero G, Cortes J, Kantarjian H. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90:732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. •• Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67. Seminal paper describing the role of mutant IDH1/2 enzymes in AML pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • Stein EM, Dinardo CD, Altman JK, Collins R, De Angelo DJ, Kantarjian HM, Sekeres MA, Fathi AT, Flinn IW, Frankel A, Levine RL, Medeiros BC, Patel MR, Pollyea DA, Roboz GJ, Stone RM, Swords RT, Tallman MS, Yen K, Attar EC, Xu Q, Tosolini A, Mei JM, Thakurta A, Knight RD, de Botton S. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood. 2015;126:323. Promising single-agent data with the IDH2 inhibitor AG221 in patients with R/R AML.

    Google Scholar 

  62. • Dinardo CD, de Botton S, Pollyea DA, Stein EM, Fathi AT, Roboz GJ, Collins R, Swords RT, Flinn IW, Altman JK, Tallman MS, Kantarjian HM, Derti A, Goldwasser M, Prahl M, Wu B, Yen K, Agresta S, Stone RM. Molecular profiling and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study. Blood. 2015;126:1306. Promising single-agent data with the IDH1 inhibitor AG120 in patients with R/R AML.

    Article  CAS  Google Scholar 

  63. Dinardo CD, Schimmer AD, Yee KWL, Hochhaus A, Carvajal RD, Janku F, Bedard P, Carpio C, Wick A, Schwartz GK, Schoffski P, Wen P, van den Bent MJ, Rosenthal M, O’Keefe J, Chen X, Pagliarini R, Schuck V, Myers A, Wei A. A phase I study of IDH305 in patients with advanced malignancies including relapsed/refractory AML and MDS that harbor IDH1 R132 mutations. Blood. 2016;128:1073.

    Google Scholar 

  64. Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116:5089–102.

    Article  CAS  PubMed  Google Scholar 

  65. Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia. 2015;29:2390–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X, Estrov Z, Quintas-Cardama A, Small D, Cortes J, Andreeff M. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100:184–98.

    Article  CAS  PubMed  Google Scholar 

  67. Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright JJ, Faderl S, Verstovsek S, Mathews S, Andreeff M, Cortes JE. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011;96:62–8.

    Article  CAS  PubMed  Google Scholar 

  68. Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J, Buckstein R, Kassis J, Minden M, Matthews J, Robinson S, Turner R, McIntosh L, Eisenhauer E, Seymour L. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma. 2010;51:252–60.

    Article  CAS  PubMed  Google Scholar 

  69. Macdonald DA, Assouline SE, Brandwein J, Kamel-Reid S, Eisenhauer EA, Couban S, Caplan S, Foo A, Walsh W, Leber B. A phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group: trial IND.186. Leuk Lymphoma. 2013;54:760–6.

    Article  CAS  PubMed  Google Scholar 

  70. • Ravandi F, Alattar ML, Grunwald MR, Rudek MA, Rajkhowa T, Richie MA, Pierce S, Daver N, Garcia-Manero G, Faderl S, Nazha A, Konopleva M, Borthakur G, Burger J, Kadia T, Dellasala S, Andreeff M, Cortes J, Kantarjian H, Levis M. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121:4655–62. A useful combination of commercially available drugs for patients with FLT3-ITD AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ravandi F, Arana Yi C, Cortes JE, Levis M, Faderl S, Garcia-Manero G, Jabbour E, Konopleva M, O’Brien S, Estrov Z, Borthakur G, Thomas D, Pierce S, Brandt M, Pratz K, Luthra R, Andreeff M, Kantarjian H. Final report of phase II study of sorafenib, cytarabine and idarubicin for initial therapy in younger patients with acute myeloid leukemia. Leukemia. 2014;28:1543–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U, Schaich M, Ottmann O, Duyster J, Wandt H, Fischer T, Giagounidis A, Neubauer A, Reichle A, Aulitzky W, Noppeney R, Blau I, Kunzmann V, Stuhlmann R, Kramer A, Kreuzer KA, Brandts C, Steffen B, Thiede C, Muller-Tidow C, Ehninger G, Berdel WE. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol. 2013;31:3110–8.

    Article  CAS  PubMed  Google Scholar 

  73. •• Rollig C, Serve H, Huttmann A, Noppeney R, Muller-Tidow C, Krug U, Baldus CD, Brandts CH, Kunzmann V, Einsele H, Kramer A, Schafer-Eckart K, Neubauer A, Burchert A, Giagounidis A, Krause SW, Mackensen A, Aulitzky W, Herbst R, Hanel M, Kiani A, Frickhofen N, Kullmer J, Kaiser U, Link H, Geer T, Reichle A, Junghanss C, Repp R, Heits F, Durk H, Hase J, Klut IM, Illmer T, Bornhauser M, Schaich M, Parmentier S, Gorner M, Thiede C, von Bonin M, Schetelig J, Kramer M, Berdel WE, Ehninger G. Study Alliance Leukaemia. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–9. A placebo-controlled, phase II, randomized trial showing a survival benefit for the addition of sorafenib to chemotherapy in younger, unselected patients with newly diagnosed AML.

    Article  PubMed  CAS  Google Scholar 

  74. Chen YB, Li S, Lane AA, Connolly C, Del Rio C, Valles B, Curtis M, Ballen K, Cutler C, Dey BR, El-Jawahri A, Fathi AT, Ho VT, Joyce A, McAfee S, Rudek M, Rajkhowa T, Verselis S, Antin JH, Spitzer TR, Levis M, Soiffer R. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20:2042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, Grandin W, Lebwohl D, Wang Y, Cohen P, Fox EA, Neuberg D, Clark J, Gilliland DG, Griffin JD. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105:54–60.

    Article  CAS  PubMed  Google Scholar 

  76. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, Fox E, Ehninger G, Feldman EJ, Schiller GJ, Klimek VM, Nimer SD, Gilliland DG, Dutreix C, Huntsman-Labed A, Virkus J, Giles FJ. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Williams CB, Kambhampati S, Fiskus W, Wick J, Dutreix C, Ganguly S, Aljitawi O, Reyes R, Fleming A, Abhyankar S, Bhalla KN, McGuirk JP. Preclinical and phase I results of decitabine in combination with midostaurin (PKC412) for newly diagnosed elderly or relapsed/refractory adult patients with acute myeloid leukemia. Pharmacotherapy. 2013;33:1341–52.

    Article  CAS  PubMed  Google Scholar 

  78. Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, Kadia T, Estrov Z, Garcia-Manero G, Konopleva M, Rajkhowa T, Durand M, Andreeff M, Levis M, Cortes J. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90:276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G, Cortes J, Kantarjian HM, DeAngelo DJ, Huntsman-Labed A, Dutreix C, del Corral A, Giles F. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, Karaman MW, Pratz KW, Pallares G, Chao Q, Sprankle KG, Patel HK, Levis M, Armstrong RC, James J, Bhagwat SS. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114:2984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cortes JE, Kantarjian H, Foran JM, Ghirdaladze D, Zodelava M, Borthakur G, Gammon G, Trone D, Armstrong RC, James J, Levis M. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31:3681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cortes JE, Perl AE, Dombret H, Kayser S, Steffen B, Rousselot P, Martinelli G, Estey EH, Burnett AK, Gammon G, Trone D, Leo E, Levis MJ. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients >= 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. ASH Annual Meeting Abstracts. 2012;120:48.

    Google Scholar 

  83. Levis MJ, Perl AE, Dombret H, Dohner H, Steffen B, Rousselot P, Martinelli G, Estey EH, Burnett AK, Gammon G, Trone D, Leo E, Cortes JE. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation. ASH Annual Meeting Abstracts. 2012;120:673.

    Google Scholar 

  84. Hills RK, Gammon G, Trone D, Burnett AK. Quizartinib significantly improves overall survival in FLT3-ITD positive AML patients relapsed after stem cell transplantation or after failure of salvage chemotherapy: a comparison with historical AML database (UK NCRI data). Blood. 2015;126:2557.

    Google Scholar 

  85. Cortes JE, Tallman MS, Schiller G, Trone D, Gammon G, Goldberg S, Perl AE, Marie JP, Martinelli G, Levis M. Results of a phase 2 randomized, open-label, study of lower doses of quizartinib (AC220; ASP2689) in subjects with FLT3-ITD positive relapsed or refractory acute myeloid leukemia (AML). Blood. 2013;122:494.

    Google Scholar 

  86. Abdelall W, Kantarjian HM, Borthakur G, Garcia-Manero G, Patel KP, Jabbour EJ, Daver NG, Kadia TM, Gborogen R, Konopleva M, Ravandi F, Andreeff M, Cortes J. The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood. 2016;128:1642.

    Article  CAS  Google Scholar 

  87. Sandmaier BM, Khaled SK, Oran B, Gammon G, Trone D, Frankfurt O. Results of a phase 1 study of quizartinib (AC220) as maintenance therapy in subjects with acute myeloid leukemia in remission following allogeneic hematopoietic cell transplantation. Blood. 2014;124:428.

    Google Scholar 

  88. Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW, Hiddemann W, Spiekermann K. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood. 2004;103:2266–75.

    Article  CAS  PubMed  Google Scholar 

  89. •• Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3. Preclinical work demonstrating the emergence of resistance-conferring mutations in the FLT3 tyrosine kinase domain under the selective pressure of FLT3-ITD-specific inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alvarado Y, Kantarjian HM, Luthra R, Ravandi F, Borthakur G, Garcia-Manero G, Konopleva M, Estrov Z, Andreeff M, Cortes JE. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer. 2014;120:2142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. • Zimmerman EI, Turner DC, Buaboonnam J, Hu S, Orwick S, Roberts MS, Janke LJ, Ramachandran A, Stewart CF, Inaba H, Baker SD. Crenolanib is active against models of drug-resistant FLT3-ITD-positive acute myeloid leukemia. Blood. 2013;122:3607–15. Preclinical study showing activity of crenolanib against resistance-conferring point mutations in FLT3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. • Galanis A, Ma H, Rajkhowa T, Ramachandran A, Small D, Cortes J, Levis M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014;123:94–100. Preclinical study showing activity of crenolanib against resistance-conferring point mutations in FLT3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. • Smith CC, Lasater EA, Lin KC, Wang Q, McCreery MQ, Stewart WK, Damon LE, Perl AE, Jeschke GR, Sugita M, Carroll M, Kogan SC, Kuriyan J, Shah NP. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc Natl Acad Sci U S A. 2014;111:5319–24. Preclinical study showing activity of crenolanib against resistance-conferring point mutations in FLT3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. • Cortes JE, Kantarjian HM, Kadia TM, Borthakur G, Konopleva M, Garcia-Manero G, Daver NG, Pemmaraju N, Jabbour E, Estrov Z, Ramachandran A, Paradela J, Pond B, Ravandi F, Vusirkala M, Patel PA, Levis MJ, Perl AE, Andreeff M, Collins R. Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML. J Clin Oncol. 2016;34:7008. Single-agent data with crenolanib in relapsed/refractory FLT3-mutated AML.

    Article  Google Scholar 

  95. Ohanian M, Kantarjian HM, Borthakur G, Kadia TM, Konopleva MY, Garcia-Manero G, Estrov Z, Ferrajoli A, Takahashi K, Jabbour EJ, Daver NG, Kornblau SM, Wierda WG, Burger JA, Naqvi K, Benton CB, Bose P, Eckardt J, Ravandi F, Cortes JE. Efficacy of a type I FLT3 inhibitor, crenolanib, with idarubicin and high-dose Ara-C in multiply relapsed/refractory FLT3+ AML. Blood. 2016;128:2744.

    Article  CAS  Google Scholar 

  96. Wang ES, Stone RM, Tallman MS, Walter RB, Eckardt JR, Collins R. Crenolanib, a type I FLT3 TKI, can be safely combined with cytarabine and anthracycline induction chemotherapy and results in high response rates in patients with newly diagnosed FLT3 mutant acute myeloid leukemia (AML). Blood. 2016;128:1071.

    Google Scholar 

  97. Stein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood. 2016;127:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levis MJ, Perl AE, Altman JK, Cortes JE, Ritchie EK, Larson RA, Smith CC, Wang ES, Strickland SA, Baer MR, Litzow MR, Claxton D, Schiller GJ, Ustun C, Liu C, Gill S, Sargent B, Bahceci E. Results of a first-in-human, phase I/II trial of ASP2215, a selective, potent inhibitor of FLT3/Axl in patients with relapsed or refractory (R/R) acute myeloid leukemia (AML). J Clin Oncol. 2015;33:7003.

    Google Scholar 

  99. • Perl AE, Altman JK, Cortes JE, Smith CC, Litzow MR, Baer MR, Claxton DF, Erba HP, Gill S, Goldberg S, Jurcic JG, Larson RA, Liu C, Ritchie EK, Schiller GJ, Spira AI, Strickland SA, Tibes R, Ustun C, Wang ES, Stuart RK, Rollig C, Neubauer A, Martinelli G, Bahceci E, Levis MJ. Antileukemic activity and tolerability of ASP2215 80 mg and greater in FLT3 mutation-positive subjects with relapsed or refractory acute myeloid leukemia: results from a phase 1/2, open-label, dose-escalation/dose-response study. Blood. 2016;128:1069. Results from the CHRYSALIS trial of gilteretinib in relapsed/refractory FLT3-mutated AML.

    Google Scholar 

  100. •• Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR, Gressick L, Wong S, Dunbar M, Zhu M, Desai MB, Cerri E, Heitner Enschede S, Humerickhouse RA, Wierda WG, Seymour JF. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22. Phase I trial of venetoclax in patients with relapsed or refractory CLL showing high efficacy.

    Article  CAS  PubMed  Google Scholar 

  101. •• Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, Dohner H, Gaidzik VI, Galinsky I, Golfman LS, Haferlach T, Harutyunyan KG, Hu J, Leverson JD, Marcucci G, Muschen M, Newman R, Park E, Ruvolo PP, Ruvolo V, Ryan J, Schindela S, Zweidler-McKay P, Stone RM, Kantarjian H, Andreeff M, Konopleva M, Letai AG. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75. Preclinical studies validating BCL-2 as a therapeutic target in AML.

    Article  CAS  PubMed  Google Scholar 

  102. • Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, McKeegan E, Salem AH, Zhu M, Ricker JL, Blum W, DiNardo CD, Kadia T, Dunbar M, Kirby R, Falotico N, Leverson J, Humerickhouse R, Mabry M, Stone R, Kantarjian H, Letai A. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17. Single-agent data with venetoclax in relapsed/refractory AML.

  103. •• Pollyea DA, Dinardo CD, Thirman MJ, Letai AG, Wei AH, Jonas BA, Arellano ML, Frattini MG, Kantarjian HM, Chyla B, Zhu M, Potluri J, Humerickhouse R, Mabry MH, Konopleva M, Pratz KW. Results of a phase 1b study of venetoclax plus decitabine or azacitidine in untreated acute myeloid leukemia patients ≥65 years ineligible for standard induction therapy. J Clin Oncol. 2016;34:7009. High efficacy of venetoclax in combination with hypomethylating agents in AML, leading to FDA “breakthrough” therapy designation.

    Google Scholar 

  104. •• Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, Zhao F, Medeiros BC, Tyvoll DA, Majeti R. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21:178–84. Seminal preclinical paper showing how IDH1/2 mutations confer BCL-2 dependence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wei A, Strickland SA, Roboz GJ, Hou J, Fiedler W, Lin TL, Martinelli G, Walter RB, Enjeti A, Fakouhi K, Darden DE, Dunbar M, Zhu M, Agarwal S, Salem AH, Mabry M, Hayslip J. Safety and efficacy of venetoclax plus low-dose cytarabine in treatment-naive patients aged ≥65 Years with acute myeloid leukemia. Blood. 2016;128:102.

    Google Scholar 

  106. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005;106:3150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reis B, Jukofsky L, Chen G, Martinelli G, Zhong H, So WV, Dickinson MJ, Drummond M, Assouline S, Hashemyan M, Theron M, Blotner S, Lee JH, Kasner M, Yoon SS, Rueger R, Seiter K, Middleton SA, Kelly KR, Vey N, Yee K, Nichols G, Chen LC, Pierceall WE. Acute myeloid leukemia patients’ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica. 2016;101:e185–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martinelli G, Pappayannidis C, Yee K, Vey N, Drummond M, Kelly K, Dickinson M, Lee J, Seiter K, Yoon SS, Assouline S, Kasner M, Nichols G, Middleton S, Blotner S, Zhi J, Pierceall W, Chen LC. Phase 1b results of idasanutlin + cytarabine (Ara-C) in acute myeloid leukemia (AML) patients (pts). 2016:S504-S504.

  109. Dinardo CD, Rosenthal J, Andreeff M, Zernovak O, Kumar P, Gajee R, Chen S, Rosen M, Song S, Kochan J, Limsakun T, Olin R. Phase 1 dose escalation study of MDM2 inhibitor DS-3032b in patients with hematological malignancies—preliminary results. Blood. 2016;128:593.

    Google Scholar 

  110. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375:1767–78.

    Article  CAS  PubMed  Google Scholar 

  112. •• Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, Lukez AP, Avigan D, Chen YB, McSweeney P, LeBoeuf NR, Rooney MS, Bowden M, Zhou CW, Granter SR, Hornick JL, Rodig SJ, Hirakawa M, Severgnini M, Hodi FS, Wu CJ, Ho VT, Cutler C, Koreth J, Alyea EP, Antin JH, Armand P, Streicher H, Ball ED, Ritz J, Bashey A, Soiffer RJ. Leukemia and Lymphoma Society Blood Cancer Research Partnership. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53. Important study providing proof of concept for immune checkpoint blockade in patients with relapsed/refractory AML and other hematologic malignancies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Orskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M, Gronbaek K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget. 2015;6:9612–26.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, Parmar S, Cortes J, Kantarjian H, Garcia-Manero G. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280–8.

    Article  CAS  PubMed  Google Scholar 

  115. • Daver N, Basu S, Garcia-Manero G, Cortes J, Ravandi F, Jabbour EJ, Hendrickson S, Pierce S, Ning J, Konopleva M, Andreeff M, Kornblau SM, Pemmaraju N, Bueso-Ramos C, Blando J, Lopez JEH, Allison J, Kantarjian H, Sharma P. Phase IB/II study of nivolumab in combination with azacytidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Blood. 2016;128:763. Promising results with the combination of azacitidine and nivolumab in patients with relapsed/refractory AML.

    Article  CAS  Google Scholar 

  116. Romagne F, Andre P, Spee P, Zahn S, Anfossi N, Gauthier L, Capanni M, Ruggeri L, Benson Jr DM, Blaser BW, Della Chiesa M, Moretta A, Vivier E, Caligiuri MA, Velardi A, Wagtmann N. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood. 2009;114:2667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Daver N, Garcia-Manero G, Basu S, Cortes JE, Ravandi F, Jabbour EJ, Pierce S, Ning J, Konopleva M, Andreeff M, Kornblau SM, Borthakur G, Pemmaraju N, Bueso-Ramos CE, Lopez JEH, Blando J, Allison J, Kantarjian HM, Sharma P. Phase IB/II study of lirilumab in combination with azacytidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Blood. 2016;128:1641.

    Article  CAS  Google Scholar 

  118. • Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol. 2014;42:247–51. Preclinical work showing that IDH-mutated AML may be particularly sensitive to glutaminase inhibition.

    Article  CAS  PubMed  Google Scholar 

  119. • Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, Saland E, Decroocq J, Maciel TT, Lambert M, Poulain L, Hospital MA, Sujobert P, Joseph L, Chapuis N, Lacombe C, Moura IC, Demo S, Sarry JE, Recher C, Mayeux P, Tamburini J, Bouscary D. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 2015;126:1346–56. Preclinical work showing that glutaminase inhibition may synergize with BCL-2 blockade in AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, Deng X, Zhai D, Shi YX, Sneed T, Verhaegen M, Soengas M, Ruvolo VR, McQueen T, Schober WD, Watt JC, Jiffar T, Ling X, Marini FC, Harris D, Dietrich M, Estrov Z, McCubrey J, May WS, Reed JC, Andreeff M. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10:375–88.

    Article  CAS  PubMed  Google Scholar 

  121. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B, McQueen T, Bornmann W, Tsao T, Bergamo P, Mak DH, Chen W, McCubrey J, Tafuri A, Andreeff M. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia. 2012;26:778–87.

    Article  CAS  PubMed  Google Scholar 

  122. Rahmani M, Davis EM, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005;280:35217–27.

    Article  CAS  PubMed  Google Scholar 

  123. Lehmann C, Friess T, Birzele F, Kiialainen A, Dangl M. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. J Hematol Oncol. 2016;9(1):50.

  124. Jain N, Curran E, Iyengar NM, Diaz-Flores E, Kunnavakkam R, Popplewell L, Kirschbaum MH, Karrison T, Erba HP, Green M, Poire X, Koval G, Shannon K, Reddy PL, Joseph L, Atallah EL, Dy P, Thomas SP, Smith SE, Doyle LA, Stadler WM, Larson RA, Stock W, Odenike O. Phase II study of the oral MEK inhibitor selumetinib in advanced acute myelogenous leukemia: a University of Chicago phase II consortium trial. Clin Cancer Res. 2014;20:490–8.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang W, Konopleva M, Burks JK, Dywer KC, Schober WD, Yang JY, McQueen TJ, Hung MC, Andreeff M. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res. 2010;70:2424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG, McCubrey J, Cortes J, Andreeff M. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008;22:808–18.

    Article  CAS  PubMed  Google Scholar 

  127. Kojima K, Konopleva M, Tsao T, Andreeff M, Ishida H, Shiotsu Y, Jin L, Tabe Y, Nakakuma H. Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis. Leukemia. 2010;24:33–43.

    Article  CAS  PubMed  Google Scholar 

  128. Kojima K, McQueen T, Chen Y, Jacamo R, Konopleva M, Shinojima N, Shpall E, Huang X, Andreeff M. p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1alpha-mediated down-regulation of CXCL12. Blood. 2011;118:4431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kojima K, Kornblau SM, Ruvolo V, Dilip A, Duvvuri S, Davis RE, Zhang M, Wang Z, Coombes KR, Zhang N, Qiu YH, Burks JK, Kantarjian H, Shacham S, Kauffman M, Andreeff M. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood. 2013;121:4166–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ranganathan P, Yu X, Santhanam R, Hofstetter J, Walker A, Walsh K, Bhatnagar B, Klisovic R, Vasu S, Phelps MA, Devine S, Shacham S, Kauffman M, Marcucci G, Blum W, Garzon R. Decitabine priming enhances the antileukemic effects of exportin 1 (XPO1) selective inhibitor selinexor in acute myeloid leukemia. Blood. 2015;125:2689–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bhatnagar B, Klisovic RB, Walker A, Vasu S, Mims A, Walsh K, Behbehani GK, Blachly JS, Vittorio M, Zhao Q, Ruppert AS, Orwick S, Ranganathan P, Byrd JC, Blum W, Garzon R. A phase 1 clinical trial of selinexor in combination with decitabine in patients with newly diagnosed and relapsed or refractory acute myeloid leukemia. Blood. 2016;128:1651.

    Article  CAS  Google Scholar 

  132. Swords RT, Kelly KR, Smith PG, Garnsey JJ, Mahalingam D, Medina E, Oberheu K, Padmanabhan S, O’Dwyer M, Nawrocki ST, Giles FJ, Carew JS. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood. 2010;115:3796–800.

    Article  CAS  PubMed  Google Scholar 

  133. • Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, Hua Z, Blakemore SJ, Faessel H, Sedarati F, Dezube BJ, Giles FJ, Medeiros BC. Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol. 2015;169:534–43. Single-agent data with first-in-class neddylation inhibitor pevonedistat in AML.

    Article  CAS  PubMed  Google Scholar 

  134. Visconte V, Nawrocki ST, Espitia CM, Kelly KR, Possemato A, Beausoleil SA, Han Y, Carraway HE, Nazha A, Advani AS, Maciejewski JP, Sekeres MA, Carew JS. Comprehensive quantitative proteomic profiling of the pharmacodynamic changes induced by MLN4924 in acute myeloid leukemia cells establishes rationale for its combination with azacitidine. Leukemia. 2016;30(5):1190–4.

  135. Swords RT, Coutre S, Maris MB, Zeidner JF, Foran JM, Cruz JC, Erba HP, Berdeja JG, Tam W, Vardhanabhuti S, Dobler I, Faessel HM, Dash AB, Sedarati F, Dezube BJ, Savona MR. Results of a clinical study of pevonedistat (Pev), a first-in-class NEDD8-activating enzyme (NAE) inhibitor, combined with azacitidine (Aza) in older patients (pts) with acute myeloid leukemia (AML). Blood. 2016;128:98.

    Google Scholar 

  136. Zhou L, Chen S, Zhang Y, Kmieciak M, Leng Y, Li L, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Rahmani M, Povirk L, Chalasani S, Berger AJ, Dai Y, Grant S. The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood. 2016;127(18):2219–30.

  137. Sakurikar N, Eastman A. Will targeting chk1 have a role in the future of cancer therapy? J Clin Oncol. 2015;33:1075–7.

    Article  CAS  PubMed  Google Scholar 

  138. Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH. Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res. 2012;18(24):6723–31.

  139. Dai Y, Chen S, Kmieciak M, Zhou L, Lin H, Pei XY, Grant S. The novel Chk1 inhibitor MK-8776 sensitizes human leukemia cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA replication and repair. Mol Cancer Ther. 2013;12(6):878–89.

  140. Zhou L, Zhang Y, Chen S, Kmieciak M, Leng Y, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Dai Y, Grant S. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia. 2015;29(4):807–18.

  141. • Garcia-Manero G, Atallah E, Khaled SK, Arellano M, Patnaik MM, Odenike O, Sayar H, Tummala M, Patel PA, Ghalie RG, Medeiros BC. A phase 2 study of pracinostat and azacitidine in elderly patients with acute myeloid leukemia (AML) not eligible for induction chemotherapy: response and long-term survival benefit. Blood. 2016;128:100. Promising efficacy of HDAC inhibitor pracinostat in combination with azacitidine in previously untreated elderly patients with AML.

    Google Scholar 

  142. •• Cortes JE, Heidel FH, Heuser M, Fiedler W, Smith BD, Robak T, Fernandez PM, Ma WW, Shaik MN, Zeremski M, O’Connell A, Chan G. A phase 2 randomized study of low dose Ara-C with or without glasdegib (PF-04449913) in untreated patients with acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2016;128:99. Survival benefit with the addition of Hedgehog (smoothened) inhibitor glasdegib to low dose cytarabine in newly diagnosed older patients with AML.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MD Anderson Cancer Center Support Grant No. P30 CA016672 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Cortes MD.

Ethics declarations

Conflict of Interest

Prithviraj Bose has received research funding through a grant from Celgene Corporation.

Pankit Vachhani declares that he has no conflict of interest.

Jorge E. Cortes has received research funding through grants from Arog, Celator, Pfizer, Novartis, Tolero, Janssen, FORMA Therapeutics, Daiichi, Astellas, and Bristol-Myers Squibb; and has received compensation from Celator, Pfizer, Novartis, Janssen, Aegios, Astellas, and Bristol-Myers Squibb for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, P., Vachhani, P. & Cortes, J.E. Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Curr. Treat. Options in Oncol. 18, 17 (2017). https://doi.org/10.1007/s11864-017-0456-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0456-2

Keywords

Navigation