Skip to main content

Advertisement

Log in

The Role of Glucose Modulation and Dietary Supplementation in Patients With Central Nervous System Tumors

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Central nervous system gliomas are the most common primary brain tumor, and these are most often high-grade gliomas. Standard therapy includes a combination of surgery, radiation, and chemotherapy which provides a modest increase in survival, but virtually, no patients are cured, the overall prognosis remains poor, and new therapies are desperately needed. Tumor metabolism is a well-recognized but understudied therapeutic approach to treating cancers. Dietary and nondietary modulation of glucose homeostasis and the incorporation of dietary supplements and other natural substances are potentially important interventions to affect cancer cell growth, palliate symptoms, reduce treatment-associated side effects, and improve the quality and quantity of life in patients with cancer. These approaches are highly desired by patients. However, they can be financially burdensome, associated with toxicities, and have, on occasion, reduced the efficacy of proven therapies and negatively impacted patient outcomes. The lack of rigorous scientific data evaluating almost all diet and supplement-based therapies currently limits their incorporation into standard oncologic practice. Rigorous studies are needed to document and improve these potentially useful approaches in patients with brain and other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14:v1–v49.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Stupp R, Mason W, van den Bent M, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. NEJM. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Tait MJ, Petrik V, Loosemore A, Bell BA, Papadopoulos MC. Survival of patients with glioblastoma multiforme has not improved between 1993 and 2004: analysis of 625 cases. Br J Neurosurg. 2007;21(5):496–500.

    Article  CAS  PubMed  Google Scholar 

  4. Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.

    Article  CAS  PubMed  Google Scholar 

  6. Timbo BB, Ross MP, Mccarthy PV, Lin CTJ. Dietary supplements in a national survey: prevalence of use and reports of adverse events. J Am Diet Assoc. 2006;106(12):1966–74.

    Article  CAS  PubMed  Google Scholar 

  7. Tanvetyanon T, Bepler G. Beta-carotene in multivitamins and the possible risk of lung cancer among smokers versus former smokers: a meta-analysis and evaluation of national brands. Cancer. 2008;113(1):150–7.

    Article  CAS  PubMed  Google Scholar 

  8. Verhoef MJ, Hagen N, Pelletier G, Forsyth P. Alternative therapy use in neurologic diseases: use in brain tumor patients. Neurology. 1999;52(3):617–22.

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong T, Cohen MZ, Hess KR, et al. Complementary and alternative medicine use and quality of life in patients with primary brain tumors. J Pain Symptom Manag. 2006;32(2):148–54.

    Article  Google Scholar 

  10. Mani N. Electronic resources reviews: natural standard. J Med Libr Assoc. 2005;93(4):507–9.

    PubMed Central  Google Scholar 

  11. Williams JT. Credible complementary and alternative medicine websites. J Adv Pr Oncol. 2013;4(2):123–4.

    Google Scholar 

  12. Ulbricht C, Weissner W, Hashmi S, et al. Essiac: systematic review by the natural standard research collaboration. J Soc Integr Oncol. 2009;7(2):73–80.

    PubMed  Google Scholar 

  13. Ulbricht CE, Chao W. Phytochemicals in the oncology setting. Curr Treat Options Oncol. 2010;11(3-4):95–106.

    Article  PubMed  Google Scholar 

  14. Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men. JAMA. 2008;300(18):2123–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Klein EA, Thompson Jr IM, Tangen CM, et al. Vitamin E and the risk of prostate cancer. JAMA. 2011;306(14):1549–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Seyfried TN, Flores R, Poff AM, D-Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2013;35(3):515–27.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Warburg O. On the origins of cancer. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  18. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89(7):1375–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Oudard S, Arvelo F, Miccoli L, et al. High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer. 1996;74(6):839–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jelluma N, Yang X, Stokoe D, Evan GI, Dansen TB, Haas-Kogan DA. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res. 2006;4(5):319–30.

    Article  CAS  PubMed  Google Scholar 

  21. Tisdale MJ, Brennan RA. Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer. 1983;47(2):293–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Fredericks M, Ramsey RB. 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978;31(6):1529–31.

    Article  CAS  PubMed  Google Scholar 

  23. Maurer GD, Brucker DP, Bähr O, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11(1):315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Klement RJ, Kämmerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond). 2011;8(1):75.

    Article  CAS  Google Scholar 

  25. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  26. Westhoff M-A, Karpel-Massler G, Brühl O, et al. A critical evaluation of PI3K inhibition in glioblastoma and neuroblastoma therapy. Mol Cell Ther. 2014;2:32.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Morfouace M, Lalier L, Oliver L, et al. Control of glioma cell death and differentiation by PKM2-Oct4 interaction. Cell Death Dis. 2014;5(1):e1036.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7(6):500–6.

    Article  PubMed  Google Scholar 

  29. Henderson CB, Filloux FM, Alder SC, Lyon JL, Caplin DA. Efficacy of the ketogenic diet as a treatment option for epilepsy: meta-analysis. J Child Neurol. 2006;21(3):193–8.

    PubMed  Google Scholar 

  30. Cervenka MC, Kossoff EH. Dietary treatment of intractable epilepsy. Continuum (Minneap Minn). 2013;19(3, Epilepsy):756–66.

    Google Scholar 

  31. Kossoff EH, Cervenka MC, Henry BJ, Haney CA, Turner Z. A decade of the modified Atkins diet (2003-2013): results, insights, and future directions. Epilepsy Behav. 2013;29(3):437–42.

    Article  PubMed  Google Scholar 

  32. Fine EJ, Segal-Isaacson CJ, Feinman RD, et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt M, Pfetzer N, Schwab M, Strauss I, Kämmerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab (Lond). 2011;8(1):54.

    Article  CAS  Google Scholar 

  34. Rieger J, Bähr O, Maurer GD, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;45(6):1843–52. This study reports results of the one published study evaluating the safety and feasibility of a ketogenic diet in the management of recurrent glioblastoma.

    Google Scholar 

  35. Neal EG, Chaffe H, Schwartz RH, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. 2009;50(5):1109–17.

    Article  PubMed  Google Scholar 

  36. Gnagnarella P, Gandini S, La Vecchia C, Maisonneuve P. Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am J Clin Nutr. 2008;87(6):1793–801.

    CAS  PubMed  Google Scholar 

  37. Dong J-Y, Qin L-Q. Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies. Breast Cancer Res Treat. 2011;126(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  38. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87(3):978–82.

    Article  CAS  PubMed  Google Scholar 

  39. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355(9206):773–8.

    Article  CAS  PubMed  Google Scholar 

  40. Williams LS, Rotich J, Qi R, et al. Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke. Neurology. 2002;59(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  41. Ali NA, O’Brien JM, Blum W, et al. Hyperglycemia in patients with acute myeloid leukemia is associated with increased hospital mortality. Cancer. 2007;110(1):96–102.

    Article  PubMed  Google Scholar 

  42. Villarreal-Garza C, Shaw-Dulin R, Lara-Medina F, et al. Impact of diabetes and hyperglycemia on survival in advanced breast cancer patients. Exp Diabetes Res. 2012;2012:Article ID 732027.

  43. Sonabend RY, McKay SV, Okcu MF, Yan J, Haymond MW, Margolin JF. Hyperglycemia during induction therapy is associated with poorer survival in children with acute lymphocytic leukemia. J Pediatr. 2009;155(1):73–8.

    Article  PubMed  Google Scholar 

  44. Xu H, Zhang LM, Liu J, Ding GX, Ding Q, Jiang HW. The association between overall survival of prostate cancer patients and hypertension, hyperglycemia, and overweight in Southern China: a prospective cohort study. J Cancer Res Clin Oncol. 2013;139(6):943–51.

    Article  PubMed  Google Scholar 

  45. Hong YJ, Lim S, Jeon H, Lee S, Lee KH. Impact of hyperglycemia on survival and infection-related adverse events in patients with metastatic colorectal cancer who were receiving palliative chemotherapy. Cancer Res Treat. 2014;46(3):288–96.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27(7):1082–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. McGirt MJ, Chaichana KL, Gathinji M, et al. Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery. 2008;63(2):286–91.

    Article  PubMed  Google Scholar 

  48. Miranda-Goncalves V, Honavar M, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 2013;15(2):1923–35.

    Google Scholar 

  49. Colen CB, Shen Y, Ghoddoussi F, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13(7):620–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Seltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22):8981–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bittinger MA, Su SM, Fantin VR, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.

    Article  Google Scholar 

  52. DeLorenze GN, McCoy L, Tsai A-L, et al. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma. BMC Cancer. 2010;10:215. doi:10.1186/1471-2407-10-215.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kyritsis AP, Bondy ML, Levin VA. Modulation of glioma risk and progression by dietary nutrients and anti-inflammatory agents. Nutr Cancer. 2011;63(2):174–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Brem SS, Zagzag D, Tsanaclis AM, Gately S, Elkouby MP, Brien SE. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am J Pathol. 1990;137(5):1121–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Sproull M, Brechbiel M, Camphausen K. Antiangiogenic therapy through copper chelation. Expert Opin Ther Targets. 2003;7(3):405–9. doi:10.1517/eott.7.3.405.22437.

    Article  CAS  PubMed  Google Scholar 

  56. Alpern-Elran H, Brem S. Angiogenesis in human brain tumors: inhibition by copper depletion. Surg Forum. 1985;36:498–500.

    Google Scholar 

  57. Brem S, Grossman SA, Carson KA, et al. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol. 2005;7(3):246–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Bouterfa H, Picht T, Kess D, et al. Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery. 2000;46(2):419–30.

    Article  CAS  PubMed  Google Scholar 

  59. Dennis MK, Field AS, Burai R, et al. Phase II study of fenretinide (NSC 374551) in adults with recurrent malignant gliomas: a North American Brain Tumor Consortium Study. J Clin Oncol. 2004;22(21):4282–9.

    Article  Google Scholar 

  60. Jaeckle KA, Hess KR, Yung WKA, et al. Phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and progressive malignant glioma: a North American Brain Tumor Consortium Study. J Clin Oncol. 2003;21(12):2305–11.

    Article  CAS  PubMed  Google Scholar 

  61. Penas-Prado M, Hess KR, Fisch MJ, et al. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro Oncol. 2014;17(2):266–73. This study reports the results of a randomized phase II factorial study demonstrating no improvement in progression-free survival with the addition of several agents including isoretinoin and, in fact, showing that the addition of isoretinoin may be detrimental. Importantly, this study also demonstrates the utility and feasibility of the factorial design.

    Article  PubMed  Google Scholar 

  62. Salomón DG, Fermento ME, Gandini NA, et al. Vitamin D receptor expression is associated with improved overall survival in human glioblastoma multiforme. J Neurooncol. 2014;118(1):49–60.

    Article  PubMed  Google Scholar 

  63. Trouillas P, Honnorat J, Bret P, Jouvet A, Gerard JP. Redifferentiation therapy in brain tumors: long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J Neurooncol. 2001;51(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  64. Naidu KA, Liu Tang J, Akhilender Naidu K, Prockop LD, Nicosia SV, Coppola D. Antiproliferative and apoptotic effect of ascorbyl stearate in human glioblastoma multiforme cells: modulation of insulin-like growth factor-I receptor (IGF-IR) expression. J Neurooncol. 2001;54(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  65. Tan PH, Sagoo P, Chan C, et al. Inhibition of NF-kappa B and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J Immunol. 2005;174(12):7633–44.

    Article  CAS  PubMed  Google Scholar 

  66. Purkayastha S, Berliner A, Fernando SS, et al. Curcumin blocks brain tumor formation. Brain Res. 2009;1266:130–8.

    Article  CAS  PubMed  Google Scholar 

  67. Weissenberger J, Priester M, Bernreuther C, et al. Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway. Clin Cancer Res. 2010;16(23):5781–95.

    Article  CAS  PubMed  Google Scholar 

  68. Elamin MH, Shinwari Z, Hendrayani S-F, et al. Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog. 2010;49(3):302–14.

    CAS  PubMed  Google Scholar 

  69. Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9.

    Article  CAS  PubMed  Google Scholar 

  70. Winking M, Sarikaya S, Rahmanian A, Jödicke A, Böker DK. Boswellic acids inhibit glioma growth: a new treatment option? J Neurooncol. 2000;46(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  71. Shen Y, Takahashi M, Byun HM, et al. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther. 2012;13(7):542–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Park B, Prasad S, Yadav V, Sung B, Aggarwal BB. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One. 2011;6(10).

  73. Cheng Y, Sk UH, Zhang Y, et al. Rational incorporation of selenium into temozolomide elicits superior antitumor activity associated with both apoptotic and autophagic cell death. PLoS One. 2012;7(4):1–10.

    Google Scholar 

  74. Wrobel JK, Seelbach MJ, Chen L, Power RF, Toborek M. Supplementation with selenium-enriched yeast attenuates brain metastatic growth. Nutr Cancer. 2013;65(4):563–70.

    Article  CAS  PubMed  Google Scholar 

  75. Pakdaman A. Symptomatic treatment of brain tumor patients with sodium selenite, oxygen, and other supportive measures. Biol Trace Elem Res. 1998;62(1-2):1–6.

    Article  CAS  PubMed  Google Scholar 

  76. Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H. Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol. 2014;9(1). This review summarizes data on 16 clinical studies conducted from 1987 to 2012 which evaluate the role of selenium supplementation in patients undergoing radiation therapy concluding that while there is suggestion of potential benefit in certain populations, data on the role of selenium in patients with brain tumors is not well defined.

  77. Klein P, Tyrlikova I, Matthews GC. Dietary treatment in adults with refractory epilepsy: a review. Neurology. 2014;83(21):1978–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Roy E. Strowd III and Stuart A. Grossman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy E. Strowd III MD.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strowd, R.E., Grossman, S.A. The Role of Glucose Modulation and Dietary Supplementation in Patients With Central Nervous System Tumors. Curr. Treat. Options in Oncol. 16, 36 (2015). https://doi.org/10.1007/s11864-015-0356-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-015-0356-2

Keywords

Navigation