Skip to main content

Advertisement

Log in

Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Using traditional educational research methods, it is difficult to assess students’ understanding of mathematical concepts, even though qualitative methods such as task observation and interviews provide some useful information. It has now become possible to use functional magnetic resonance imaging (fMRI) to observe brain activity whilst students think about mathematics, although much of this work has concentrated on number. In this study, we used fMRI to examine brain activity whilst ten university students translated between graphical and algebraic formats of both linear and quadratic mathematical functions. Consistent with previous studies on the representation of number, this task elicited activity in the intra-parietal sulcus, as well as in the inferior frontal gyrus. We also analysed qualitative data on participants’ introspection of strategies employed when reasoning about function. Expert participants focused more on key properties of functions when translating between formats than did novices. Implications for the teaching and learning of functions are discussed, including the relationship of function properties to difficulties in conversion from algebraic to graphical representation systems and vice versa, the desirability of teachers focusing attention on function properties, and the importance of integrating graphical and algebraic function instruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In mathematics gradient is usually seen as a calculated, exact value rather than a perceived quantity, even for graphs. However cognitive neuroscience research on visual processing shows that line orientation is processed very early in the visual stream in primary visual cortex (e.g. Tootell et al., 1998), and thus estimating it should require no conscious calculation.

References

  • Akkoc, H., & Tall, D. O. (2002). The simplicity, complexity and complication of the function concept. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th conference of the international group for the psychology of mathematics education (Vol. 2, pp. 25–32). Norwich: IGPME.

    Google Scholar 

  • Anderson, J. R., Qin, Y., Sohn, M.-H., Stenger, V. A., & Carter, C. S. (2003). An information-processing model of the BOLD response in symbol manipulation tasks. Psychonomic Bulletin & Review, 10, 241–261.

    Article  Google Scholar 

  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.

    Article  Google Scholar 

  • Ansari, D., Dhital, B., & Siong, S. C. (2006). Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes. Brain Research, 1067(1), 181.

    Article  Google Scholar 

  • Baroody, A. J., & Dowker, A. (Eds.). (2003). The development of arithmetic concepts and skills: Constructing adaptive expertise. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bruer, J. T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26(8), 4–16.

    Google Scholar 

  • Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.

    Article  Google Scholar 

  • Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83–91.

    Article  Google Scholar 

  • Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.

    Article  Google Scholar 

  • Chein, J. M., Fissell, K., Jacobs, S., & Fiez, J. A. (2002). Functional heterogeneity within Broca’s area during verbal working memory. Physiology & Behavior, 77(4–5), 635–639.

    Article  Google Scholar 

  • Chinnappan, M., & Thomas, M. O. J. (2001). Prospective teachers’ perspectives on function representations. In J. Bobis, B. Perry, & M. Mitchelmore (Eds.), Numeracy and beyond. Proceedings of the 24th annual conference of the Mathematics Education Research Group of Australasia (pp. 155–162). Sydney: MERGA.

    Google Scholar 

  • Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617–630.

    Article  Google Scholar 

  • Cobb, P. (2000). From representations to symbolizing: Introductory comments on semiotics and mathematical learning. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing, communicating in mathematics classrooms: Perspective on discourse, tools and instructional design. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cohen Kadosh, R., Kadosh, K. C., & Henik, A. (2008). When brightness counts: The neuronal correlate of numerical-luminance interference. Cerebral Cortex, 18(2), 337–343.

    Article  Google Scholar 

  • Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32(3–4), 313–328.

    Article  Google Scholar 

  • Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11(2), 157–163.

    Article  Google Scholar 

  • Danker, J. F., & Anderson, J. R. (2007). The roles of prefrontal and posterior parietal cortex in algebra problem solving: A case of using cognitive modeling to inform neuroimaging data. NeuroImage, 35(3), 1365.

    Article  Google Scholar 

  • de Saussure, F. (1966). Course in general linguistics. C. Bally & A. Sechehaye, in collaboration with Albert Riedlinger (Eds.) (W. Baskin, Trans.). New York: McGraw-Hill.

  • Dehaene, S. (2009). Origins of mathematical intuitions. Annals of the New York Academy of Sciences, 1156, 232–259.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  Google Scholar 

  • Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., et al. (2005). Learning by strategies and learning by drill—evidence from an fMRI study. NeuroImage, 25(3), 838.

    Article  Google Scholar 

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.

    Article  Google Scholar 

  • Eisenberg, T., & Dreyfus, T. (1991). On the reluctance to visualize in mathematics. In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning mathematics. MAA Notes #19.

  • Even, R. (1998). Factors involved in linking representations of functions. Journal of Mathematical Behavior, 17, 105–121.

    Article  Google Scholar 

  • Even, R., & Schwarz, B. B. (2006). Implications of competing interpretations of practice for research and theory in mathematics education. Educational Studies in Mathematics, 61, 103–131.

    Article  Google Scholar 

  • Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.

    Article  Google Scholar 

  • Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346–356.

    Article  Google Scholar 

  • Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., et al. (2009). Fact learning in complex arithmetic and figural–spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936–2952.

    Article  Google Scholar 

  • Hatano, G., & Oura, Y. (2003). Commentary: Reconceptualizing school learning using insight from expertise research. Educational Researcher, 32(8), 26–29.

    Article  Google Scholar 

  • Heinze, A., Star, J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. ZDM, 45(1), 535–540.

    Article  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews: Neuroscience, 6, 435–448.

    Article  Google Scholar 

  • Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. NeuroImage, 36(3), 993.

    Article  Google Scholar 

  • Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L.-B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44(4), 376–385.

    Google Scholar 

  • Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324(5934), 1583–1585.

    Article  Google Scholar 

  • Krueger, F., Spampinato, M. V., Pardini, M., Pajevic, S., Wood, J. N., Weiss, G. H., et al. (2008). Integral calculus problem solving: An fMRI investigation. Neuroreport, 19(11), 1095–1099.

    Article  Google Scholar 

  • Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: A functional MRI study. Behavioral and Brain Functions, 2, 31.

    Article  Google Scholar 

  • Lee, K., Lim, Z. Y., Yeong, S. H. M., Ng, S. F., Venkatraman, V., & Chee, M. W. L. (2007). Strategic differences in algebraic problem solving: Neuroanatomical correlates. Brain Research, 1155, 163–171.

    Article  Google Scholar 

  • Lerman, S. (1994). Articulating theories of mathematics learning. In E. Paul (Ed.), Constructing mathematical knowledge: Epistemology and mathematics education. London: The Falmer Press.

    Google Scholar 

  • Lesh, R. (1999). The development of representational abilities in middle school mathematics. In I. E. Sigel (Ed.), Development of mental representation: Theories and application (pp. 323–350). New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lesh, R. (2000). What mathematical abilities are most needed for success beyond school in a technology based age of information. In M. O. J. Thomas (Ed.), Proceedings of TIME2000 an international conference on technology in mathematics education (pp. 72–82). Auckland: The University of Auckland.

    Google Scholar 

  • Mason, J. (2002). Researching your own practice: The discipline of noticing. London: Routledge-Falmer.

    Google Scholar 

  • Mason, J. (2008). Doing ≠ construing and doing + discussing ≠ learning: The importance of the structure of attention. Proceedings of ICME-10, Copenhagen (CD version of proceedings). http://www.icme10.dk/proceedings/pages/regular_pdf/RL_John_Mason.pdf. Accessed 25 Sept 2009.

  • Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of knowing-to act in the moment. Educational Studies in Mathematics, 38, 135–161.

    Article  Google Scholar 

  • Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage, 12, 357–365.

    Article  Google Scholar 

  • Naccache, L., & Dehaene, S. (2001). The priming method: Imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex, 11(10), 966–974.

    Article  Google Scholar 

  • Neider, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews. Neuroscience, 6, 177–190.

    Article  Google Scholar 

  • Nistal, A. A., Van Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2009). Conceptualising, investigating, and stimulating representational flexibility in mathematical problem-solving and learning: A critical review. ZDM, 45(1), 627–636.

    Article  Google Scholar 

  • Otte, M. (2006). Mathematical epistemology from a Peircean semiotic point of view. Educational Studies in Mathematics, 61, 11–38.

    Article  Google Scholar 

  • Peirce, C. S. (1894). What is a sign? http://members.door.net/arisbe/menu/library/bycsp/bycsp.htm. Accessed 29 Oct 2007.

  • Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12(3), 461–479.

    Article  Google Scholar 

  • Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547–555.

    Article  Google Scholar 

  • Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293.

    Article  Google Scholar 

  • Pinel, P., Piazza, M., Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number size and luminance during comparative judgements. Neuron, 41, 983–993.

    Article  Google Scholar 

  • Presmeg, N. (2006). Semiotics and the “connections” standard: Significance of semiotics for teachers of mathematics. Educational Studies in Mathematics, 61, 163–182.

    Article  Google Scholar 

  • Qin, Y., Carter, C. S., Silk, E., Stenger, V. A., Fissell, K., Goode, A., et al. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proceedings of National Academy of Sciences, 101(15), 5686–5691.

    Article  Google Scholar 

  • Rosano, C., Sweeney, J. A., Melchitzky, D. S., & Lewis, D. A. (2003). The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields. Brain Research, 972(1–2), 16–30.

    Article  Google Scholar 

  • Saenz-Ludlow, A., & Presmeg, N. (2006). Guest editorial: Semiotic perspectives on learning mathematics and communicating mathematically. Educational Studies in Mathematics, 61, 1–10.

    Article  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime users guide. Pittsburgh: Psychology Software Tools Inc.

    Google Scholar 

  • Simon, O., Kherif, F., Flandin, G., Poline, J.-B., Riviere, D., Mangin, J.-F., et al. (2004). Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage, 23(3), 1192.

    Article  Google Scholar 

  • Simon, O., Mangin, J., Cohen, L., Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation and language related areas in the human parietal lobe. Neuron, 33(3), 475–487.

    Article  Google Scholar 

  • Sohn, M.-H., Goode, A., Koedinger, K. R., Stenger, V. A., Fissell, K., Carter, C. S., et al. (2004). Behavioral equivalence, but not neural equivalence—neural evidence of alternative strategies in mathematical thinking. Nature Neuroscience, 7(11), 1193.

    Article  Google Scholar 

  • Sternberg, R. J. (2003). What is an “expert student”? Educational Researcher, 32(8), 5–9.

    Article  Google Scholar 

  • Stewart, S., & Thomas, M. O. J. (2007). Embodied, symbolic and formal thinking in linear algebra. International Journal of Mathematical Education in Science and Technology, 38(7), 927–937.

    Article  Google Scholar 

  • Stocco, A., & Anderson, J. R. (2008). Endogenous control and task representation: An fMRI study in algebraic problem-solving. Journal of Cognitive Neuroscience, 20(7), 1300–1314.

    Article  Google Scholar 

  • Szucs, D., & Goswami, U. (2007). Educational neuroscience: Defining a new discipline for the study of mental representations. Mind, Brain and Education, 1(3), 114–127.

    Article  Google Scholar 

  • Tall, D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.

    Article  Google Scholar 

  • Thomas, M. O. J. (2003). The role of representation in teacher understanding of function. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 291–298). Honolulu: University of Hawai’i.

    Google Scholar 

  • Thomas, M. O. J. (2008). Developing versatility in mathematical thinking. Mediterranean Journal for Research in Mathematics Education, 7(2), 67–87.

    Google Scholar 

  • Thomas, M. O. J., & Hong, Y. Y. (2001). Representations as conceptual tools: Process and structural perspectives. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 257–264). Utrecht: Utrecht University.

    Google Scholar 

  • Thomas, M. O. J., Wilson, A. J., Corballis, M. C., & Lim, V. K. (2008). Neuropsychological evidence for the role of graphical and algebraic representations in understanding function. In M. Goos, K. Makar, & R. Brown (Eds.), Navigating currents and charting directions. Proceedings of the 30th annual conference of the mathematics education research group of Australasia (pp. 515–521). MERGA Inc: Brisbane.

  • Tootell, R. B. H., Hadjikhani, N. K., Vanduffel, W., Liu, A. K., Mendola, J. D., Sereno, M. I., et al. (1998). Functional analysis of primary visual cortex (V1) in humans. Proceedings of the National Academy of Sciences, 95(3), 811-817.

    Google Scholar 

  • Varma, S., McCandliss, B. D., & Schwartz, D. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 27(3), 140–152.

    Article  Google Scholar 

  • Venkatraman, V., Ansari, D., & Chee, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744.

    Article  Google Scholar 

  • Venkatraman, V., Siong, S. C., Chee, M. W. L., & Ansari, D. (2006). Effect of language switching on arithmetic: A bilingual fMRI study. Journal of Cognitive Neuroscience, 18(1), 64.

    Article  Google Scholar 

  • Williams, C. G. (1998). Using concept maps to assess conceptual knowledge of function. Journal for Research in Mathematics Education, 29(4), 414–421.

    Article  Google Scholar 

  • Wilson, A. J., Thomas, M. O. J., Lim, V. K., & Corballis, M. C. (2008). Parietal areas involved in format-independent representation of mathematical functions. Poster presented at Human Brain Mapping, Melbourne, Australia.

  • Yackel, E. (2000). Introduction: Perspectives on semiotics and instructional design. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing, communicating in mathematics classrooms: Perspective on discourse, tools and instructional design (pp. 1–13). New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic—evidence from brain imaging studies. Neuroscience and Biobehavioral Reviews, 33(6), 909–925.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Texas Instruments and the University of Auckland Research Committee for funding support. We also thank the staff at the Center for Advanced MRI, as well as Ed Hubbard, Donna Addis, Philippe Pinel, and Nick McNair for advice on fMRI analyses. Partial results from this study were previously presented at two conferences: as a poster at Human Brain Mapping (Wilson, Thomas, Lim & Corballis, 2008) and as a paper at a Mathematics Education Research Group of Australasia Conference (Thomas, Wilson, Corballis & Lim, 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. J. Thomas.

Additional information

M. O. J. Thomas and A. J. Wilson contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Appendix (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M.O.J., Wilson, A.J., Corballis, M.C. et al. Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM Mathematics Education 42, 607–619 (2010). https://doi.org/10.1007/s11858-010-0272-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-010-0272-7

Keywords

Navigation