Skip to main content

Advertisement

Log in

Developmental cognitive neuroscience of arithmetic: implications for learning and education

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In this article, we review the brain and cognitive processes underlying the development of arithmetic skills. This review focuses primarily on the development of arithmetic skills in children, but it also summarizes relevant findings from adults for which a larger body of research currently exists. We integrate relevant findings and theories from experimental psychology and cognitive neuroscience. We describe the functional neuroanatomy of cognitive processes that influence and facilitate arithmetic skill development, including calculation, retrieval, strategy use, decision making, as well as working memory and attention. Building on recent findings from functional brain imaging studies, we describe the role of distributed brain regions in the development of mathematical skills. We highlight neurodevelopmental models that go beyond the parietal cortex role in basic number processing, in favor of multiple neural systems and pathways involved in mathematical information processing. From this viewpoint, we outline areas for future study that may help to bridge the gap between the cognitive neuroscience of arithmetic skill development and educational practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman, B. P. (1996). Induction of a memory retrieval strategy by young children. Journal of Experimental Child Psychology, 62(2), 243–271.

    Article  Google Scholar 

  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.

    Article  Google Scholar 

  • Arterberry, M. E., Milburn, M. M., Loza, H. L., & Willert, H. S. (2001). Retrieval of episodic information from memory: Comparisons among 3- and 4-year-olds, 7- and 8-year olds, and adults. Journal of Cognition and Development, 2, 283–305.

    Article  Google Scholar 

  • Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. Developmental Review, 2, 213–236.

    Article  Google Scholar 

  • Baroody, A. J. (1987). The development of counting strategies for single-digit addition. Journal for Research in Mathematics Education, 18, 141–157.

    Article  Google Scholar 

  • Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116–14121.

    Article  Google Scholar 

  • Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “choking under pressure” in math. Psychological Science, 16(2), 101–105.

    Article  Google Scholar 

  • Besnon, D. F., & Weir, W. F. (1972). Acalculia: Acquired anarithmetia. Cortex, 8(4), 465–472.

  • Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288–298.

    Article  Google Scholar 

  • Bull, R., Epsy, K., & Wiebe, S. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–208.

    Article  Google Scholar 

  • Bunge, S. A., & Wright, S. B. (2007). Neurodevelopmental changes in working memory and cognitive control. Current Opinion in Neurobiology, 17(2), 243–250.

    Google Scholar 

  • Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.

    Article  Google Scholar 

  • Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 2217–2229.

    Article  Google Scholar 

  • Casey, B. J., Thomas, K. M., Davidson, M. C., Kunz, K., & Franzen, P. L. (2002). Dissociating striatal and hippocampal function developmentally with a stimulus–response compatibility task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(19), 8647–8652.

    Google Scholar 

  • Chang, C., Crottaz-Herbette, S., & Menon, V. (2007). Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage, 34(3), 1253–1269.

    Article  Google Scholar 

  • Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617–630.

    Article  Google Scholar 

  • Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. Neuroimage, 22(1), 466–476.

    Article  Google Scholar 

  • Crottaz-Herbette, S., Anagnoson, R. T., & Menon, V. (2004). Modality effects in verbal working memory: Differential prefrontal and parietal responses to auditory and visual stimuli. Neuroimage, 21(1), 340–351.

    Article  Google Scholar 

  • Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18(5), 766–780.

    Article  Google Scholar 

  • Cycowicz, Y. M. (2000). Memory development and event-related brain potentials in children. Biological Psychology, 54(1–3), 145–174.

    Article  Google Scholar 

  • Cycowicz, Y. M., Friedman, D., Snodgrass, J. G., & Duff, M. (2001). Recognition and source memory for pictures in children and adults. Neuropsychologia, 39(3), 255–267.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3/4/5/6), 487–506.

    Article  Google Scholar 

  • Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 33(4), 697–710.

    Google Scholar 

  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—An fMRI study. Brain Research: Cognitive Brain Research, 18(1), 76–88.

    Article  Google Scholar 

  • Delazer, M., Domahs, F., Lochy, A., Bartha, L., Brenneis, C., & Trieb, T. (2004). The acquisition of arithmetic knowledge—An fMRI study. Cortex, 40(1).

  • Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., et al. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. Neuroimage, 25(3), 838–849.

    Article  Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience, and education. New York: Psychology Press.

    Book  Google Scholar 

  • Eichenbaum, H. (2000). Hippocampus: Mapping or memory? Current Biology, 10, R785–R787.

    Article  Google Scholar 

  • Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97, 493–513.

    Article  Google Scholar 

  • Fuchs, L. S., Powell, S. R., Hamlett, C. L., Fuchs, D., Cirino, P. T., & Fletcher, J. M. (2007). Remediating computational deficits at third grade: A randomized field trial. Journal of Research on Educational Effectiveness (in press).

  • Geary, D. C. (1990). A componential analysis of an early learning deficit in mathematics. Journal of Experimental Child Psychology, 49(3), 363–383.

    Article  Google Scholar 

  • Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  • Geary, D. C., & Brown, S. C. (1991). Cognitive addition: Strategy choice and speed-of-processing differences in gifted, normal, and mathematically disabled children. Developmental Psychology, 27, 398–406.

    Article  Google Scholar 

  • Geary, D. C., & Damon, W. (2006). Development of mathematical understanding. In D. Kuhl & R. S. Siegler (Eds.), Handbook of child psychology (Vol. 6). New York: Wiley.

    Google Scholar 

  • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77(3), 236–263.

    Article  Google Scholar 

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121–151.

    Article  Google Scholar 

  • Geary, D. C., Hoard, M. K., Nugent, L., Byrd-Craven, J., Berch, D. B., & Mazzocco, M. M. (2007). Strategy use, long-term memory, and working memory capacity. In Anonymous (Ed.), Why is math so hard for some children? (pp. 83–105). Baltimore, MD: Paul H. Brookes Publishing Co.

  • Geary, D. C., Hoard, M. K., & Royer, J. M. (2002). Learning disabilities in basic mathematics: Deficits in memory and cognition. In Anonymous (Ed.), Mathematical cognition (pp. 93–115). Greenwich, CT: Information Age Publishing.

  • Geary, D. C., Widaman, K. F., & Little, T. D. (1986). Cognitive addition and multiplication: Evidence for a single memory network. Memory and Cognition, 14, 478–487.

    Article  Google Scholar 

  • Ghilardi, M., Ghez, C., Dhawan, V., Moeller, J., Mentis, M., Nakamura, T., et al. (2000). Patterns of regional brain activation associated with different forms of motor learning. Brain Research, 871(1), 127–145.

    Article  Google Scholar 

  • Girelli, L., Delazer, M., Semenza, C., & Denes, G. (1996). The representation of arithmetical facts: Evidence from two rehabilitation studies. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 32(1), 49–66.

    Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.

    Article  Google Scholar 

  • Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604–608.

    Google Scholar 

  • Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.

    Article  Google Scholar 

  • Gruber, O., Indefrey, P., Steinmetz, H., & Kleinschmidt, A. (2001). Dissociating neural correlates of cognitive components in mental calculation. Cerebral cortex (New York, N.Y.: 1991), 11(4), 350–359.

  • Hart, J, Jr., Kraut, M. A., Kremen, S., Soher, B., & Gordon, B. (2000). Neural substrates of orthographic lexical access as demonstrated by functional brain imaging. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13(1), 1–7.

    Google Scholar 

  • Henschen, S. (1920). Klinische und anatomische beitraege sur pathologie des Gehirns. Stockholm, Sweden: Nordiska Bokhandeln.

    Google Scholar 

  • Hitch, G. J., & McAuley, E. (1991). Working memory in children with specific arithmetical learning difficulties. British Journal of Psychology, 82(3), 375–386.

    Google Scholar 

  • Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. Neuroimage, 36(3), 993–1003.

    Article  Google Scholar 

  • Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstatter, F., Benke, T., Felber, S., et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365–1375.

    Article  Google Scholar 

  • Kahn, H. J., & Whitaker, H. A. (1991). Acalculia: An historical review of localization. Brain and Cognition, 17, 102–115.

    Article  Google Scholar 

  • Kail, R., & Park, Y. S. (1994). Processing time, articulation time, and memory span. Journal of Experimental Child Psychology, 57(2), 281–291.

    Article  Google Scholar 

  • Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica, 86(2–3), 199–225.

    Article  Google Scholar 

  • Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: Evidence from a parametric fMRI study. Neuroimage, 21(3), 946–953.

    Article  Google Scholar 

  • Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13336–13341.

    Article  Google Scholar 

  • Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48(4), 657–661.

    Article  Google Scholar 

  • LeFevre, J. A., Bisanz, J., & Mrkonjic, L. (1988). Cognitive arithmetic: Evidence for obligatory activation of arithmetic facts. Memory and Cognition, 16, 45–53.

    Google Scholar 

  • Lyon, G. R., & Rumsey, J. M. (1996). Neuroimaging: A window to the neurological foundations of learning and behavior in children. Baltimore, MD: Paul H. Brooke.

    Google Scholar 

  • McCarthy, R. A., & Warrington, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334(6181), 428–430.

    Article  Google Scholar 

  • McCloskey, M., Harley, W., & Sokol, S. M. (1991). Models of arithmetic fact retrieval: An evaluation in light of findings from normal and brain-damaged subjects. Journal of Experimental Psychology: Learning Memory and Cognition, 17(3), 377–397.

    Article  Google Scholar 

  • McNeil, J. E., & Warrington, E. K. (1994). A dissociation between addition and subtraction with written calculation. Neuropsychologia, 32(6), 717–728.

    Article  Google Scholar 

  • Menon, V., Boyett-Anderson, J. M., & Reiss, A. L. (2005). Maturation of medial temporal lobe response and connectivity during memory encoding. Cognitive Brain Research, 25(1), 379–385.

    Article  Google Scholar 

  • Menon, V., Mackenzie, K., Rivera, S. M., & Reiss, A. L. (2002). Prefrontal cortex involvement in processing incorrect arithmetic equations: Evidence from event-related fMRI. Human Brain Mapping, 16(2), 119–130.

    Article  Google Scholar 

  • Menon, V., Rivera, S. M., White, C. D., Eliez, S., Glover, G. H., & Reiss, A. L. (2000a). Functional optimization of arithmetic processing in perfect performers. Cognitive Brain Research, 9(3), 343–345.

    Article  Google Scholar 

  • Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000b). Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage, 12(4), 357–365.

    Article  Google Scholar 

  • Menon, V., White, C. D., Eliez, S., Glover, G. H., & Reiss, A. L. (2000c). Analysis of a distributed neural system involved in spatial information, novelty, and memory processing. Human Brain Mapping, 11(2), 117–129.

    Article  Google Scholar 

  • Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D., & Menon, V. (2009). Differential contribution of specific working memory components to mathematical skills in 2nd and 3rd graders. Learning and Individual Differences (in press).

  • Miller, K., Perlmutter, M., & Keating, D. (1984). Cognitive arithmetic: Comparison of operations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 46–60.

    Article  Google Scholar 

  • Niedeggen, M., Rosler, F., & Jost, K. (1999). Processing of incongruous mental calculation problems: Evidence for an arithmetic N400 effect. Psychophysiology, 36(3), 307–324.

    Article  Google Scholar 

  • Ofen, N., Kao, Y. C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., & Gabrieli, J. D. (2007). Development of the declarative memory system in the human brain. Nature Neuroscience, 10(9), 1198–1205.

    Article  Google Scholar 

  • Olesen, P. J., Macoveanu, J., Tegnér, J., & Klingberg, T. (2007). Brain activity related to working memory and distraction in children and adults. Cerebral Cortex, 17(5), 1047–1054.

    Article  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.

    Article  Google Scholar 

  • Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.

    Article  Google Scholar 

  • Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80(1), 44–57.

    Article  Google Scholar 

  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367.

    Article  Google Scholar 

  • Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. Neuroimage, 19(3), 473–481.

    Article  Google Scholar 

  • Price, C. J., & Devlin, J. T. (2004). The pro and cons of labelling a left occipitotemporal region: “The visual word form area”. Neuroimage, 22(1), 477–479.

    Article  Google Scholar 

  • Rickard, T. C., & Bourne, L. E. (1996). Some tests of an identical elements model of basic arithmetic skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1281–1295.

    Article  Google Scholar 

  • Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: An fMRI study. Neuropsychologia, 38(3), 325–335.

    Article  Google Scholar 

  • Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779–1790.

    Article  Google Scholar 

  • Rosenberg-Lee, M., Tsang, J. M., & Menon, V. (2009). Symbolic, numeric, and magnitude representations in the parietal cortex. Behavioral Brain Sciences, 32(3-4), 350–351. discussion 356–373.

    Article  Google Scholar 

  • Salimpoor, V. N., Chang, C., & Menon, V. (2009). Neural basis of repetition priming during mathematical cognition: Repetition suppression or repetition enhancement? J Cogn Neurosci.

  • Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9(1), 7–24.

    Article  Google Scholar 

  • Schneider, W., & Goswami, U. (2002). Memory development in childhood. In Anonymous (Ed.), Blackwell handbook of childhood cognitive development (pp. 236–256). London, UK: Blackwell.

  • Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 3586–3594.

    Article  Google Scholar 

  • Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60(4), 973–980.

    Article  Google Scholar 

  • Siegler, R. S. (1998). Children’s Thinking. New Jersey: Prentice Hall.

    Google Scholar 

  • Siegler, R. S., & Shrager, J. (1984). Strategy choice in addition and subtraction: How do children know what to do? In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377–397.

    Article  Google Scholar 

  • Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.

    Article  Google Scholar 

  • Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.

    Article  Google Scholar 

  • Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.

    Article  Google Scholar 

  • Suzuki, W. A., & Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. The Journal of Comparative Neurology, 350(4), 497–533.

    Article  Google Scholar 

  • Swanson, H. L. (1994). Short-term memory and working memory: Do both contribute to our understanding of academic achievement in children and adults with learning disabilities? Journal of Learning Disabilities, 27(1), 34–50.

    Article  Google Scholar 

  • Swanson, H. L., Cooney, J. B., & Brock, S. (1993). The influence of working memory and classification ability on children’s word problem solution. Journal of Experimental Child Psychology, 55(3), 374–395.

    Article  Google Scholar 

  • Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory in children with learning disabilities: Both executive and phonological processes are important. Journal of Experimental Child Psychology, 79(3), 294–321.

    Article  Google Scholar 

  • Takayama, Y., Sugishita, M., Akiguchi, I., & Kimura, J. (1994). Isolated acalculia due to left parietal lesion. Archives of Neurology, 51(3), 286–291.

    Google Scholar 

  • Temple, C. M. (2002). Developmental dyscalculia. In F. B. A. J. Grafman (Ed.), Handbook of Neuropsychology (Vol. 6: Child Psychology, pp. 211–222). North Holland: Elsevier Science Publishers.

  • van der Sluis, S., van der Leij, A., & de Jong, P. F. (2005). Working memory in Dutch children with reading- and arithmetic-related LD. Journal of Learning Disabilities, 38(3), 207–221.

    Article  Google Scholar 

  • van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication. implications for the organisation of arithmetical facts. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 37(3), 363–388.

    Google Scholar 

  • van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177.

    Article  Google Scholar 

  • Venkatraman, V., Ansari, D., & Chee, M. W. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753.

    Article  Google Scholar 

  • Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34, 31–51.

    Google Scholar 

  • Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory–a single-subject analysis. Physiology & Behavior, 92(1–2), 186–192.

    Article  Google Scholar 

  • Wilson, K. M., & Swanson, H. L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? Journal of Learning Disabilities, 34(3), 237–248.

    Article  Google Scholar 

  • Wu, S. S., Chang, T. T., Majid, A., Caspers, S., Eickhoff, S. B., & Menon, V. (2009). Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. Cereb Cortex.

  • Wu, S. S., Meyer, M. L., Maeda, U., Salimpoor, V., Tomiyama, S., Geary, D. C., et al. (2008). Standardized assessment of strategy use and working memory in early mental arithmetic performance. Developmental Neuropsychology, 33(3), 365–393.

    Article  Google Scholar 

  • Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314–327.

    Article  Google Scholar 

  • Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic-evidence from brain imaging studies. Neuroscience and Biobehavioral Reviews, 33(6), 909–925.

    Article  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Meghan Meyer, Sarah Wu and Christina B Young for assistance in the preparation of this article, Dr. Mark Eckert for assistance with Fig. 3, and Dr. Miriam Rosenberg-Lee for the insightful comments and feedback. The preparation of this article was made possible by grants from the NIH (HD047520, HD059205) and the National Science Foundation (BCS/DRL 0449927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, V. Developmental cognitive neuroscience of arithmetic: implications for learning and education. ZDM Mathematics Education 42, 515–525 (2010). https://doi.org/10.1007/s11858-010-0242-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-010-0242-0

Keywords

Navigation