Skip to main content
Log in

On the absolutely continuous spectrum of generalized indefinite strings II

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We continue to investigate the absolutely continuous spectrum of generalized indefinite strings. By following an approach of Deift and Killip, we establish stability of the absolutely continuous spectra of two more model examples of generalized indefinite strings under rather wide perturbations. In particular, one of these results allows us to prove that the absolutely continuous spectrum of the isospectral problem associated with the two-component Camassa—Holm system in a certain dispersive regime is essentially supported on the set (−∞, −1/2] ⋃ [1/2, ∞).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bauer, Measure and Integration Theory, De Gruyter Studies in Mathematics, Vol. 26, Walter de Gruyter, Berlin, 2001.

    Book  Google Scholar 

  2. C. Bennewitz, B. M. Brown and R. Weikard, Inverse spectral and scattering theory for the half-line left-definite Sturm-Liouville problem, SIAM Journal on Mathematical Analysis 40 (2008/09), 2105–2131.

    Article  MathSciNet  Google Scholar 

  3. R. V. Bessonov and S. A. Denisov, A spectral Szegő theorem on the real line, Advances in Mathematics 359 (2020), Article no. 106851.

  4. R. V. Bessonov and S. A. Denisov, De Branges canonical systems with finite logarithmic integral, Analysis & PDE 14 (2021), 1509–1556.

    Article  MathSciNet  Google Scholar 

  5. V. I. Bogachev, Measure Theory, Vols. I, II, Springer, Berlin, 2007.

    MATH  Google Scholar 

  6. R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Physical Review Letters 71 (1993), 1661–1664.

    Article  MathSciNet  Google Scholar 

  7. M. Chen, S. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Letters in Mathematical Physics 75 (2006), 1–15.

    Article  MathSciNet  Google Scholar 

  8. A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Physics Letters. A 372 (2008), 7129–7132.

    Article  MathSciNet  Google Scholar 

  9. P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Communications in Mathematical Physics 203 (1999), 341–347.

    Article  MathSciNet  Google Scholar 

  10. J. Eckhardt, Direct and inverse spectral theory of singular left-definite Sturm-Liouville operators, Journal of Differential Equations 253 (2012), 604–634.

    Article  MathSciNet  Google Scholar 

  11. J. Eckhardt, The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Archive for Rational Mechanics and Analysis 224 (2017), 21–52.

    Article  MathSciNet  Google Scholar 

  12. J. Eckhardt and K. Grunert, A Lagrangian view on complete integrability of the two-component Camassa-Holm system, Journal of Integrable Systems 2 (2017), Article no. xyx002.

  13. J. Eckhardt and A. Kostenko, An isospectral problem for global conservative multi-peakon solutions of the Camassa-Holm equation, Communications in Mathematical Physics 329 (2014), 893–918.

    Article  MathSciNet  Google Scholar 

  14. J. Eckhardt and A. Kostenko, The inverse spectral problem for indefinite strings, Inventiones Mathematicae 204 (2016), 939–977.

    Article  MathSciNet  Google Scholar 

  15. J. Eckhardt and A. Kostenko, Quadratic operator pencils associated with the conservative Camassa—Holm flow, Bulletin de la Société Mathématique de France 145 (2017), 47–95.

    Article  MathSciNet  Google Scholar 

  16. J. Eckhardt and A. Kostenko, The classical moment problem and generalized indefinite string, Integral Equations and Operator Theory 90 (2018), Article no. 23.

  17. J. Eckhardt and A. Kostenko, On the absolutely continuous spectrum of generalized indefinite string, Annales Henri Poincaré 22 (2021), 3529–3564.

    Article  MathSciNet  Google Scholar 

  18. J. Eckhardt and A. Kostenko, Generalized indefinite strings with purely discrete spectrum, in From Complex Analysis to Operator Theory: A Panorama In Memory of Sergey Naboko, Operator Theory: Advances and Applications, Springer, Berlin, to appear, https://arxiv.org/abs/2106.13138.

  19. K. Grunert, H. Holden and X. Raynaud, Global solutions for the two-component Camassa-Holm system, Communications in Partial Differential Equations 37 (2012), 2245–2271.

    Article  MathSciNet  Google Scholar 

  20. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1965.

    Book  Google Scholar 

  21. D. D. Holm and R. I. Ivanov, Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems 27 (2011), Article no. 045013.

  22. D. Hughes and K. M. Schmidt, Absolutely continuous spectrum of Dirac operators with square-integrable potentials, Proceedings of the Royal Society of Edinburgh. Section A 144 (2014), 533–555.

    Article  MathSciNet  Google Scholar 

  23. R. I. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift für Naturforschung 61a (2006), 133–138.

    Article  Google Scholar 

  24. R. Killip, Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum, International Mathematics Research Notices 2002 (2002), 2029–2061.

    Article  Google Scholar 

  25. R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Annals of Mathematics 158 (2003), 253–321.

    Article  MathSciNet  Google Scholar 

  26. R. Killip and B. Simon, Sum rules and spectral measures of Schrödinger operators with L2potentials, Annals of Mathematics 170 (2009), 739–782.

    Article  MathSciNet  Google Scholar 

  27. S. Molchanov, M. Novitskii and B. Vainberg, First KdV integrals and absolutely continuous spectrum for 1-D Schrödinger operator, Communications in Mathematical Physics 216 (2001), 195–213.

    Article  MathSciNet  Google Scholar 

  28. C. Remling, Spectral Theory of Canonical Systems, De Gruyter Studies in Mathematics, Vol. 70, Walter de Gruyter, Berlin-Boston, MA, 2018.

    Book  Google Scholar 

  29. R. V. Romanov, Canonical Systems and de Branges Spaces, London Mathematical Society Lecture Notes Series, Cambridge University Press, Cambridge, to appear, https://arxiv.org/abs/1408.6022.

  30. M. Rosenblum and J. Rovnyak, Topics in Hardy Classes and Univalent Functions, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Basel, 1994.

    Book  Google Scholar 

  31. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  32. A. Rybkin, On the spectral L2conjecture, 3/2-Lieb-Thirring inequality and distributional potentials, Journal of Mathematical Physics 46 (2005), Article no. 123505.

  33. A. Rybkin, Preservation of the absolutely continuous spectrum: Some extensions of a result by Molchanov—Novitskii—Vainberg, in Recent Advances in Differential Equations and Mathematical Physics, Contemporary Mathematics, Vol. 412, American Mathematical Society, Providence, RI, 2006, pp. 271–281.

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Rossen Ivanov for helpful discussions and the anonymous reviewer for useful comments and hints with respect to the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Eckhardt.

Additional information

Research supported by the Austrian Science Fund (FWF) under Grants No. P29299 (J.E.) and P28807 (A.K.) as well as by the Slovenian Research Agency (ARRS) under Grant No. J1-9104 (A.K.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckhardt, J., Kostenko, A. & Kukuljan, T. On the absolutely continuous spectrum of generalized indefinite strings II. Isr. J. Math. 250, 307–344 (2022). https://doi.org/10.1007/s11856-022-2339-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2339-x

Navigation