Skip to main content
Log in

Angles of Gaussian primes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Fermat showed that every prime p = 1 mod 4 is a sum of two squares: p = a2 + b2. To any of the 8 possible representations (a, b) we associate an angle whose tangent is the ratio b/a. In 1919 Hecke showed that these angles are uniformly distributed as p varies, and in the 1950’s Kubilius proved uniform distribution in somewhat short arcs. We study fine scale statistics of these angles, in particular the variance of the number of such angles in a short arc. We present a conjecture for this variance, motivated both by a random matrix model, and by a function field analogue of this problem, for which we prove an asymptotic form for the corresponding variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bary-Soroker, Y. Smilansky and A. Wolf, On the function field analogue of Landau’s theorem on sums of squares, Finite Fields and their Applications 39 (2016), 195–215.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. M. Bui, J. P. Keating and D. J. Smith, On the variance of sums of arithmetic functions over primes in short intervals and pair correlation for L-functions in the Selberg class, Journal fo the London Mathematical Society 94 (2016), 161–185.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. J. Dyson, Statistical theory of the energy levels of complex systems, I, II and III, Journal of Mathematical Physics 3 (1962), 140–175.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Harman and P. A. Lewis, Gaussian primes in narrow sectors, Mathematika 48 (2001), 119–135.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I, Mathematische Zeitschrift 1 (1918), 357–376; II, Mathematische Zeitschrift 6 (1920), 11–51.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, Vol. 53, American Mathematical Society, Providence, RI, 2004.

  7. N. M. Katz, Witt vectors and a question of Rudnick and Waxman, International Mathematics Research Notices 2017 (2017), 3377–3412.

    MathSciNet  MATH  Google Scholar 

  8. J. P. Keating and B. E. Odgers, Symmetry transitions in random matrix theory & L-functions, Communications in Mathematical Physics 281 (2008), 499–528.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Keating and Z. Rudnick, The variance of the number of prime polynomials in short intervals and in residue classes, International Mathematics Research Notices 2014 (2014), 259–288.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. B. Koval’chik, Density theorems for sectors and progressions, Lietuvos Matematikos Rinkinys 15 (1975), 133–151.

    MathSciNet  Google Scholar 

  11. I. Kubilyus, The distribution of Gaussian primes in sectors and contours, Leningradskiĭ Gosudarstvennyĭ Ordena Lenina Universitet imeni A. A. Zhdanova. Uchenye Zapiski. Seriya Matematicheskikh Nauk 137 (1950), 40–52.

    MathSciNet  Google Scholar 

  12. J. Kubilius, On a problem in the n-dimensional analytic theory of numbers, Vilniaus Valst. Univ. Mokslo Darbai. Mat. Fiz. Chem. Mokslu Ser. 4 (1955), 5–43.

    MathSciNet  Google Scholar 

  13. P. Lévy, Sur la division d’un segment par des points choisis au hasard, Comptes rendus hebdomadaires des séances de l’Académie des Sciences 208 (1939), 147–149.

    MATH  Google Scholar 

  14. M. Maknys, Zeros of Hecke Z-functions and the distribution of primes of an imaginary quadratic field, Lithuanian Mathematical Journal 15 (1975), 140–149.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Maknys, Density theorems for Hecke Z functions and the distribution of primes of an imaginary quadratic field, Lithuanian Mathematical Journal 16 (1976), 105–110.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Maknys, Refinement of the remainder term in the law of the distribution of prime numbers of an imaginary quadratic field in sectors, Lithuanian Mathematical Journal 17 (1977), 90–93.

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Parzanchevski and P. Sarnak, Super-golden-gates for PU(2), Advances in Mathematics 327 (2018), 869–901.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeév Rudnick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnick, Z., Waxman, E. Angles of Gaussian primes. Isr. J. Math. 232, 159–199 (2019). https://doi.org/10.1007/s11856-019-1867-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1867-5

Navigation