Skip to main content
Log in

Entire functions of exponential type represented by pseudo-random and random Taylor series

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the influence of the multipliers ξ(n) on the angular distribution of zeroes of the Taylor series \({F_\xi }\left( z \right) = \sum\limits_{n \geqslant 0} {\xi \left( n \right)} \frac{{{z^n}}}{{n!}}\).

We show that the distribution of zeroes of Fξ is governed by certain autocorrelations of the sequence ξ. Using this guiding principle, we consider several examples of random and pseudo-random sequences ξ and, in particular, answer some questions posed by Chen and Littlewood in 1967.

As a by-product, we show that if ξ is a stationary random integer-valued sequence, then either it is periodic, or its spectral measure has no gaps in its support. The same conclusion is true if ξ is a complex-valued stationary ergodic sequence that takes values in a uniformly discrete set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Azarin, Asymptotic behavior of subharmonic functions of finite order, Mat. Sb., 108 (1979) 147–167; English translation: Math. USSR-Sb. 36 (1980), 135–154.

    MathSciNet  Google Scholar 

  2. L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955.

    Book  MATH  Google Scholar 

  3. S. Bochner and F. Bohnenblust, Analytic functions with almost periodic coefficients, Ann. of Math. (2), 35 (1934), 152–161.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Breuer and B. Simon, Natural boundaries and spectral theory, Adv. Math., 226 (2011), 4902–4920.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. W. Chen and J. E. Littlewood, Some new properties of power series, Indian J. Math., 9 (1967), 289–324.

    MathSciNet  MATH  Google Scholar 

  6. J. Dufresnoy and Ch. Pisot, Prolongement analytique de la série de Taylor, Ann. Sci. École Norm. Sup. (3), 68 (1951), 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Eremenko and I. Ostrovskii, On the “pits effect” of Littlewood and Offord, Bull. Lond. Math. Soc., 39 (2007), 929–939.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, second edition. Springer–Verlag, Berlin, 1990.

    MATH  Google Scholar 

  9. L. Hörmander, Notions of Convexity, Birkhäuser Boston, Boston, 1994.

    MATH  Google Scholar 

  10. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971.

    MATH  Google Scholar 

  11. Z. Kabluchko and D. Zaporozhets, Asymptotic distribution of complex zeros of random analytic functions, Ann. Probab., 42 (2014), 1374–1395.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Katsnelson, Stieltjes functions and Hurwitz stable entire functions, Complex Anal. Oper. Theory, 5 (2011), 611–630.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Katznelson, An Introduction to Harmonic Analysis, third edition, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  14. B. Ya. Levin, Distribution of Zeros of Entire Functions, revised edition, American Mathematical Society, Providence, R.I., 1980.

    Google Scholar 

  15. J. E. Littlewood, A “pits effect” for all smooth enough integral functions with a coefficient factor exp(n 2aπi), \(\alpha = \frac{4}{2}\left( {\sqrt 5 - 1} \right)\), J. London Math. Soc. 43 (1968), 79–92.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. E. Littlewood and A. C. Offord, On the distribution of zeros and a-values of a random integral function. II, Ann. of Math. (2) 49 (1948), 885–952; errata, 50 (1949), 990–991.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, American Mathematical Society, Providence, RI, 1994.

    Book  MATH  Google Scholar 

  18. M. Nassif, On the behaviour of the function \(f\left( z \right) = \sum\nolimits_{n = 0}^\infty {{e^{\sqrt 2 \pi i{n^2}}}} \frac{{{}^z2n}}{{n!}}\), Proc. London Math. Soc. (2) 54 (1952), 201–214.

    Article  MathSciNet  Google Scholar 

  19. E. C. Titchmarsh, The Theory of the Riemann Zeta-function, second edition, The Clarendon Press, Oxford University Press, New York, 1986.

    MATH  Google Scholar 

  20. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Borichev.

Additional information

To Alex Eremenko on the occasion of his birthday

A. Nishry was supported by U.S. National Science Foundation Grant DMS-1128155.

A. Nishry and M. Sodin were supported by Grant No. 166/11 of the Israel Science Foundation of the Israel Academy of Sciences and Humanities.

M. Sodin was supported by Grant No. 2012037 of the United States–Israel Binational Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borichev, A., Nishry, A. & Sodin, M. Entire functions of exponential type represented by pseudo-random and random Taylor series. JAMA 133, 361–396 (2017). https://doi.org/10.1007/s11854-017-0037-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-017-0037-0

Navigation