Skip to main content

Advertisement

Log in

Association between lipocalin-2 levels and diabetic retinopathy in patients with overweight/obese type 2 diabetes mellitus

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Aims

The study aimed to investigate the association between lipocalin-2 (LCN-2) levels and diabetic retinopathy (DR) in patients with overweight/obese type 2 diabetes mellitus(T2DM), and to explore the mechanism of LCN-2 in overweight/obese DR.

Methods

The study involved 237 T2DM inpatients divided into the normal group and overweight/obese group, and the two groups were further divided into two subgroups according to the presence or absence of DR. The demographic data and biochemical parameters were measured.

Results

LCN-2 levels in overweight/obese groups were higher than those in normal groups (P < 0.001 for all), and patients with DR had higher levels of LCN-2 than those without DR(P < 0.05 for all) in normal groups and overweight/obese groups. Binary logistic regression analysis showed that no significant significance was observed for LCN-2 levels compared to those below the median in the normal group, but individuals with LCN-2 levels above the median had 4.198 times higher risk of developing DR than those below the median (OR = 4.198, 95% CI = 1.676–10.516) after adjustment for potential confounding factors in the overweight/obese group. In the total, normal and overweight/obese groups, the prediction capacity of LCN-2 for DR was 1.56, 1.58 and 1.65 times, respectively.

Conclusionsː In conclusion, our study found that LCN-2 levels were higher in overweight/obese patients with DR, and LCN-2 was an independent predictor of DR in T2DM patients with overweight/obese. In addition, LCN-2 may be a valuable predictor of DR-like factors such as the duration of diabetes and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity Metab-Clin Exp 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Ng ACT, Delgado V, Borlaug BA et al (2021) Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 18:291–304. https://doi.org/10.1038/s41569-020-00465-5

    Article  PubMed  Google Scholar 

  3. International Diabetes Federation (2021) IDF Diabetes Atlas 10th edition. http://www.diabetesatlas.org

  4. Yau JWY, Rogers SL, Kawasaki R et al (2012) Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin KY, Hsih WH, Lin YB et al (2021) Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig 12:1322–1325. https://doi.org/10.1111/jdi.13480

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moschen AR, Adolph TE, Gerner RR et al (2017) Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol Metab 28:388–397. https://doi.org/10.1016/j.tem.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  7. Al Jaberi S, Cohen A, Abdulrazzaq YM et al (2021) Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomed Pharmacother 142:10. https://doi.org/10.1016/j.biopha.2021.112002

    Article  CAS  Google Scholar 

  8. Wang Y, Lam KSL, Kraegen EW et al (2007) Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 53:34–41. https://doi.org/10.1373/clinchem.2006.075614

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Yang Z, Ye Z et al (2012) Lipocalin-2, glucose metabolism and chronic low-grade systemic inflammation in Chinese people. Cardiovasc Diabetol 11:11. https://doi.org/10.1186/1475-2840-11-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chung JO, Park SY, Cho DH et al (2016) Plasma neutrophil gelatinase-associated lipocalin levels are positively associated with diabetic retinopathy in patients with Type2 diabetes. Diabetic Med 33:1649–1654. https://doi.org/10.1111/dme.13141

    Article  CAS  PubMed  Google Scholar 

  11. Alberti K, Zimmet PZ, Consultation WHO (1998) Definition, diagnosis and classification of diabetes mellitus and its complications part 1: Diagnosis and classification of diabetes mellitus - Provisional report of a WHO consultation. Diabetic Med 15:539–553. https://doi.org/10.1002/(sici)1096-9136(199807)15:7%3c539::Aid-dia668%3e3.0.Co;2-s

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz S, Harasawa M, Baldivieso V et al (2015) Nonmydriatic fundus camera for diabetic retinopathy screening in a safety net hospital: effectiveness, prevalence, and risk factors. Eur J Ophthalmol 25:145–152. https://doi.org/10.5301/ejo.5000515

    Article  PubMed  Google Scholar 

  13. Li DH, Li HY, Bauer C et al (2021) Lipocalin-2 Variants and Their Relationship With Cardio-Renal Risk Factors. Front Endocrinol 12:8. https://doi.org/10.3389/fendo.2021.781763

    Article  Google Scholar 

  14. Allegra A, Alonci A, Bellomo G et al (2011) Increased serum levels of neutrophil gelatinase-associated lipocalin in patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma 52:101–107. https://doi.org/10.3109/10428194.2010.531413

    Article  CAS  PubMed  Google Scholar 

  15. Shang WJ, Wang ZG (2017) The Update of NGAL in Acute Kidney Injury. Curr Protein Pept Sci 18:1211–1217. https://doi.org/10.2174/1389203717666160909125004

    Article  CAS  PubMed  Google Scholar 

  16. Zhang JW, Novakovic N, Hua Y et al (2021) Role of lipocalin-2 in extracellular peroxiredoxin 2-induced brain swelling, inflammation and neuronal death. Exp Neurol 335:9. https://doi.org/10.1016/j.expneurol.2020.113521

    Article  CAS  Google Scholar 

  17. Kamata M, Tada Y, Tatsuta A et al (2012) Serum lipocalin-2 levels are increased in patients with psoriasis. Clin Exp Dermatol 37:296–299. https://doi.org/10.1111/j.1365-2230.2011.04265.x

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh S, Stepicheva N, Yazdankhah M et al (2020) The role of lipocalin-2 in age-related macular degeneration (AMD). Cell Mol Life Sci 77:835–851. https://doi.org/10.1007/s00018-019-03423-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Batsos G, Christodoulou E, Vartholomatos G et al (2019) Vitreous levels of Lipocalin-2 on patients with primary rhegmatogenous retinal detachment. PLoS ONE 14:9. https://doi.org/10.1371/journal.pone.0227266

    Article  CAS  Google Scholar 

  20. Auguet T, Quintero Y, Terra X et al (2011) Upregulation of Lipocalin 2 in Adipose Tissues of Severely Obese Women: Positive Relationship With Proinflammatory Cytokines. Obesity 19:2295–2300. https://doi.org/10.1038/oby.2011.61

    Article  CAS  PubMed  Google Scholar 

  21. Law IKM, Xu AM, Lam KSL et al (2010) Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity. Diabetes 59:872–882. https://doi.org/10.2337/db09-1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan QW, Yang Q, Mody N et al (2007) The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–2540. https://doi.org/10.2337/db07-0007

    Article  CAS  PubMed  Google Scholar 

  23. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 49:67–81. https://doi.org/10.1016/j.preteyeres.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang H, Lou H, Li YR et al (2020) Elevated vitreous Lipocalin-2 levels of patients with proliferative diabetic retinopathy. BMC Ophthalmol 20:7. https://doi.org/10.1186/s12886-020-01462-5

    Article  CAS  Google Scholar 

  25. Wang W, Lo ACY (2018) Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci 19:14. https://doi.org/10.3390/ijms19061816

    Article  CAS  Google Scholar 

  26. Ong KL, Wu L, Januszewski AS et al (2020) Relationships of adipocyte-fatty acid binding protein and lipocalin 2 with risk factors and chronic complications in type 2 diabetes and effects of fenofibrate: A fenofibrate Intervention and event lowering in diabetes sub-study. Diabetes Res Clin Pract 169:13. https://doi.org/10.1016/j.diabres.2020.108450

    Article  CAS  Google Scholar 

  27. Giebel SJ, Menicucci G, McGuire PG et al (2005) Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 85:597–607. https://doi.org/10.1038/labinvest.3700251

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Goetz D, Li JY et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10:1045–1056. https://doi.org/10.1016/s1097-2765(02)00710-4

    Article  CAS  PubMed  Google Scholar 

  29. Ciudin A, Hernandez C, Simo R (2010) Iron overload in diabetic retinopathy: a cause or a consequence of impaired mechanisms? Experimental diabetes research 2010. https://doi.org/10.1155/2010/714108

  30. Valapala M, Edwards M, Hose S et al (2014) Increased Lipocalin-2 in the retinal pigment epithelium of Cryba1 cKO mice is associated with a chronic inflammatory response. Aging Cell 13:1091–1094. https://doi.org/10.1111/acel.12274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun WY, Bai B, Luo CT et al (2018) Lipocalin-2 derived from adipose tissue mediates aldosterone-induced renal injury. JCI Insight 3:19. https://doi.org/10.1172/jci.insight.120196

    Article  Google Scholar 

  32. Zhao M, Gelize E, Levy R et al (2021) Mineralocorticoid Receptor Pathway and Its Antagonism in a Model of Diabetic Retinopathy. Diabetes 70:2668–2682. https://doi.org/10.2337/db21-0099

    Article  CAS  PubMed  Google Scholar 

  33. Canonica J, Mehanna C, Bonnard B et al (2019) Effect of acute and chronic aldosterone exposure on the retinal pigment epithelium-choroid complex in rodents. Exp Eye Res 187:16. https://doi.org/10.1016/j.exer.2019.107747

    Article  CAS  Google Scholar 

  34. Wen Y, Chen X, Feng H et al (2022) Kdm6a deficiency in microglia/macrophages epigenetically silences Lcn2 expression and reduces photoreceptor dysfunction in diabetic retinopathy. Metabolism 136:155293. https://doi.org/10.1016/j.metabol.2022.155293

  35. Lim YC, Bhatt MP, Kwon MH et al (2014) Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice. Cardiovasc Res 101:155–164. https://doi.org/10.1093/cvr/cvt238

    Article  CAS  PubMed  Google Scholar 

  36. Ishihara M, Yukimura Y, Aizawa T et al (1987) HIGH BLOOD-PRESSURE AS RISK FACTOR IN DIABETIC-RETINOPATHY DEVELOPMENT IN NIDDM PATIENTS. Diabetes Care 10:20–25. https://doi.org/10.2337/diacare.10.1.20

    Article  CAS  PubMed  Google Scholar 

  37. Lopez M, Cos FX, Alvarez-Guisasola F et al (2017) Prevalence of diabetic retinopathy and its relationship with glomerular filtration rate and other risk factors in patients with type 2 diabetes mellitus in Spain. DM2 HOPE study. J Clin Transl ENdocrinol 9:61–65. https://doi.org/10.1016/j.jcte.2017.07.004

  38. Opdenakker G, Abu E-A (2019) Metalloproteinases mediate diabetes-induced retinal neuropathy and vasculopathy. Cell Mol Life Sci 76:3157–3166. https://doi.org/10.1007/s00018-019-03177-3

    Article  CAS  PubMed  Google Scholar 

  39. Mohammad G, Vandooren J, Siddiquei MM et al (2014) Functional links between gelatinase B/matrix metalloproteinase-9 and prominin-1/CD133 in diabetic retinal vasculopathy and neuropathy. Prog Retin Eye Res 43:76–91. https://doi.org/10.1016/j.preteyeres.2014.07.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all of the study participants.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82170860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinli zhou.

Ethics declarations

Ethical approval

This study was in accordance with the Declaration of Helsinki and has been approved by the Ethics Committee of Shandong Provincial Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, X., Qi, T. et al. Association between lipocalin-2 levels and diabetic retinopathy in patients with overweight/obese type 2 diabetes mellitus. Ir J Med Sci 192, 2785–2792 (2023). https://doi.org/10.1007/s11845-023-03365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-023-03365-y

Keywords

Navigation