Skip to main content

Advertisement

Log in

Mechanical Properties of 3D-Printed Porous Poly-ether-ether-ketone (PEEK) Orthopedic Scaffolds

  • Interactions between Biomaterials and Biological Tissues and Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Poly-ether-ether-ketone (PEEK) has evolved to be the preferred biomaterial for orthopedic implants; however, its bioinert nature significantly limits its osseointegration property. Porous PEEK implants can effectively promote osseointegration, yet pores also decrease the scaffold’s load-bearing capacity. Hence, it is critical to developing an optimum pore-sized scaffold with favorable mechanical properties. In this study, we used 3D printing to develop PEEK scaffolds with precise pores ranging from 100 µm to 600 µm. We first experimentally determined the scaffolds’ compressive properties and then used finite element analysis (FEA) to investigate the scaffolds’ stress distribution and failure modes. Results indicate that 3D-printed PEEK with 300-µm pore size exhibits the highest yield compressive strength, and increasing the pore size beyond that would decrease the specimen’s yield strength. Furthermore, FEA denoted that the stress distribution is the maximum in the scaffold core along the longitudinal axis under compressive load and less on the scaffold’s outer shell. Finally, buckling simulation results confirmed that the specimens fail according to the second buckling mode with two curvatures, similar to the real-time experimental results. Our studies suggest that 3D-printed PEEK specimens with 300-µm pore sizes exhibit the best compressive yield strength suitable for orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.B. Rose, Discovery and development of the “Victrex” Polyaryletherketone PEEK, in High performance polymers: their origin and development (Springer, Berlin, 1986), pp. 187–193.

    Chapter  Google Scholar 

  2. R.B. Rigby, Polyetheretherketone, in Engineering thermoplastics (CRC Press, Cambrigde, 2020), pp. 299–314.

    Chapter  Google Scholar 

  3. S.M. Kurtz and J.N. Devine, Biomaterials 28, 4845 (2007).

    Article  Google Scholar 

  4. A. Bhattacharjee, A. Gupta, M. Verma, P.A. Murugan, P. Sengupta, S. Matheshwaran, I. Manna, and K. Balani, Ceram. Int. 45, 12225 (2019).

    Article  Google Scholar 

  5. A. Bhattacharjee, R. Hassan, A. Gupta, M. Verma, P.A. Murugan, P. Sengupta, M. Saravanan, I. Manna, and K. Balani, J. Am. Ceram. Soc. 103, 4090 (2020).

    Article  Google Scholar 

  6. J.-H. Chen, C. Liu, L. You, and C.A. Simmons, J. Biomech. 43, 108 (2010).

    Article  Google Scholar 

  7. M. Niinomi, Mater. Sci. Eng., A 243, 231 (1998).

    Article  Google Scholar 

  8. Y. Noyama, T. Miura, T. Ishimoto, T. Itaya, M. Niinomi, and T. Nakano, Mater. Trans. 53, 565 (2012).

    Article  Google Scholar 

  9. W.T. Lee, J.Y. Koak, Y.J. Lim, S.K. Kim, H.B. Kwon, and M.J. Kim, J Biomed Mater Res Part B Appl Biomater 100, 1044 (2012).

    Article  Google Scholar 

  10. C.S. Li, C. Vannabouathong, S. Sprague, M. Bhandari, Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders 8 (2015) CMAMD-S20354.

  11. A. Alnazzawi, J Int Soc Prevent Commun Dentistry 8, 93 (2018).

    Article  Google Scholar 

  12. B. Di Maggio, P. Sessa, P. Mantelli, P. Maniscalco, F. Rivera, G.M. Calori, L. Bisogno, G. Scaravilli, and M. Caforio, Injury 48, S34 (2017).

    Article  Google Scholar 

  13. P. Sikder, J.A. Ferreira, E.A. Fakhrabadi, K.Z. Kantorski, M.W. Liberatore, M.C. Bottino, and S.B. Bhaduri, Dent. Mater. 36, 865 (2020).

    Article  Google Scholar 

  14. S. Najeeb, Z. Khurshid, J.P. Matinlinna, F. Siddiqui, M.Z. Nassani, and K. Baroudi, Int J Dent 2015, 1–7 (2015).

    Article  Google Scholar 

  15. F. Rahmitasari, Y. Ishida, K. Kurahashi, T. Matsuda, M. Watanabe, and T. Ichikawa, Dent J 5, 35 (2017).

    Article  Google Scholar 

  16. Y. Ren, P. Sikder, B. Lin, and S.B. Bhaduri, Mater. Sci. Eng., C 85, 107 (2018).

    Article  Google Scholar 

  17. P. Sikder, C.R. Grice, B. Lin, V.K. Goel, and S.B. Bhaduri, ACS Biomater. Sci. Eng. 4, 2767 (2018).

    Article  Google Scholar 

  18. J.H. Lee, H.L. Jang, K.M. Lee, H.-R. Baek, K. Jin, K.S. Hong, J.H. Noh, and H.-K. Lee, Acta Biomater. 9, 6177 (2013).

    Article  Google Scholar 

  19. S. Stübinger, A. Drechsler, A. Bürki, K. Klein, P. Kronen, and B. von Rechenberg, J Biomed Mater Res Part B: Appl Biomater 104, 1182 (2016).

    Article  Google Scholar 

  20. W. Wang, C.J. Luo, J. Huang, and M. Edirisinghe, J. R. Soc. Interf 16, 20180955 (2019).

    Article  Google Scholar 

  21. H. Zhou, V.K. Goel, and S.B. Bhaduri, Mater. Lett. 125, 96 (2014).

    Article  Google Scholar 

  22. K. Gan, H. Liu, L. Jiang, X. Liu, X. Song, D. Niu, T. Chen, and C. Liu, Dent. Mater. 32, e263 (2016).

    Article  Google Scholar 

  23. D. Briem, S. Strametz, K. Schröoder, N.M. Meenen, W. Lehmann, W. Linhart, A. Ohl, and J.M. Rueger, J. Mater. Sci. - Mater. Med. 16, 671 (2005).

    Article  Google Scholar 

  24. A. Xu, X. Liu, X. Gao, F. Deng, Y. Deng, and S. Wei, Mater. Sci. Eng., C 48, 592 (2015).

    Article  Google Scholar 

  25. X. Wu, X. Liu, J. Wei, J. Ma, F. Deng, and S. Wei, Int. J. Nanomed. 7, 1215 (2012).

    Google Scholar 

  26. R.S. Brum, P.R. Monich, F. Berti, M.C. Fredel, L.M. Porto, C.A.M. Benfatti, and J.C.M. Souza, Mater. Chem. Phys. 223, 542 (2019).

    Article  Google Scholar 

  27. M. Fedel, T.T. Wong, G. Speranza, B. Lohberger, M. Nogler, and F. Awaja, Surf. Coat. Technol. 374, 95 (2019).

    Article  Google Scholar 

  28. R.A. Surmenev, Surf. Coat. Tech. 206, 2035 (2012).

    Article  Google Scholar 

  29. M.S.A. Bakar, M.H.W. Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan, K.A. Khor, and P. Cheang, Biomaterials 24, 2245 (2003).

    Article  Google Scholar 

  30. N. Abbasi, S. Hamlet, R.M. Love, and N.-T. Nguyen, J Sci: Adv Mater Devic 5, 1 (2020).

    Google Scholar 

  31. V. Karageorgiou and D. Kaplan, Biomaterials 26, 5474 (2005).

    Article  Google Scholar 

  32. K. Elhattab, S.B. Bhaduri, J.G. Lawrence, and P. Sikder, ACS Appl. Bio Mater. 4, 3276 (2021).

    Article  Google Scholar 

  33. X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, and W.Y. Yeong, Mater. Sci. Eng., C 76, 1328 (2017).

    Article  Google Scholar 

  34. K. Elhattab, P. Sikder, J.M. Walker, M.C. Bottino, and S.B. Bhaduri, Mater. Lett. 263, 127227 (2020).

    Article  Google Scholar 

  35. Y. Su, J. He, N. Jiang, H. Zhang, L. Wang, X. Liu, D. Li, and Z. Yin, Mater. Des. 191, 108671 (2020).

    Article  Google Scholar 

  36. H. Spece, T. Yu, A.W. Law, M. Marcolongo, and S.M. Kurtz, J. Mech. Behav. Biomed. Mater. 109, 103850 (2020).

    Article  Google Scholar 

  37. X. Feng, L. Ma, H. Liang, X. Liu, J. Lei, W. Li, K. Wang, Y. Song, B. Wang, and G. Li, ACS Omega 5, 26655 (2020).

    Article  Google Scholar 

  38. Z. Liu, M. Zhang, Z. Wang, Y. Wang, W. Dong, W. Ma, S. Zhao, and D. Sun, Compos. B Eng. 230, 109512 (2022).

    Article  Google Scholar 

  39. S.H. Oh, I.K. Park, J.M. Kim, and J.H. Lee, Biomaterials 28, 1664 (2007).

    Article  Google Scholar 

  40. S. Ishihara, A.J. McEvily, T. Goshima, K. Kanekasu, and T. Nara, J. Mater. Sci. - Mater. Med. 11, 661 (2000).

    Article  Google Scholar 

  41. M. Vaezi and S. Yang, Virtual and Physical Prototyping 10, 123 (2015).

    Article  Google Scholar 

  42. A. Standard, ASTM International, West Conchohocken (2008).

  43. I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft, Addit. Manuf. 16, 24 (2017).

    Google Scholar 

  44. B. Xu, K.-W. Lee, W. Li, M.J. Yaszemski, L. Lu, Y. Yang, and S. Wang, Mater. Des. 211, 110150 (2021).

    Article  Google Scholar 

  45. C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, and C. Shi, J. Mater. Process. Technol. 248, 1 (2017).

    Article  Google Scholar 

  46. M.C. Sobieraj and C.M. Rimnac, Fracture fatigue and notch behavior of PEEK, in PEEK biomaterials handbook (Elsevier, Armsterdam, 2019).

    Google Scholar 

  47. E.F. Morgan, G.U. Unnikrisnan, and A.I. Hussein, Annu. Rev. Biomed. Eng. 20, 119 (2018).

    Article  Google Scholar 

  48. W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, Materials 8, 5834 (2015).

    Article  Google Scholar 

  49. P. Geng, J. Zhao, W. Wu, W. Ye, Y. Wang, S. Wang, and S. Zhang, J. Manuf. Process. 37, 266 (2019).

    Article  Google Scholar 

  50. P. Wang, B. Zou, H. Xiao, S. Ding, and C. Huang, J. Mater. Process. Technol. 271, 62 (2019).

    Article  Google Scholar 

  51. F.J.Q. Gonzalez and N. Nuno, Biomater Biomech Bioeng 3, 1 (2016).

    Google Scholar 

  52. G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans, and A.A. Zadpoor, Mater. Des. 49, 957 (2013).

    Article  Google Scholar 

  53. N. Soro, L. Brassart, Y. Chen, M. Veidt, H. Attar, and M.S. Dargusch, Mater. Sci. Eng., A 725, 43 (2018).

    Article  Google Scholar 

  54. H. Shen and L.C. Brinson, Int. J. Solids Struct. 44, 320 (2007).

    Article  Google Scholar 

  55. A. Maiti, W. Small, J.P. Lewicki, T.H. Weisgraber, E.B. Duoss, S.C. Chinn, M.A. Pearson, C.M. Spadaccini, R.S. Maxwell, and T.S. Wilson, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  56. Q. Li, W. Zhao, Y. Li, W. Yang, and G. Wang, Polymers 11, 656 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

P. Sikder acknowledges his start-up Grant No. STARTUP06 at Cleveland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabaha Sikder.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gummadi, S.K., Saini, A., Owusu-Danquah, J.S. et al. Mechanical Properties of 3D-Printed Porous Poly-ether-ether-ketone (PEEK) Orthopedic Scaffolds. JOM 74, 3379–3391 (2022). https://doi.org/10.1007/s11837-022-05361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05361-6

Navigation