Skip to main content
Log in

Hydrogel Based Anodization: A Novel Technique to Form Ordered Nano-sized Porous Oxide Layer on the Aluminum Surface

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A hydrogel-based anodization system has been proposed, for the first time in the literature to our knowledge, to perform anodization. Here, the electrolyte solution is trapped inside the hydrogel, which makes the anodization process safer for the operators and environment. In addition, trapping the ions inside the hydrogel increases the reaction rate, and thus the process takes place in very short times. In the present study, the effects of the polymer concentration, process time, acid concentration and pressure were evaluated, and we found that the best porous structures with an average pore size of 26.7 nm were obtained for 4 M polymer concentration, 150 s process time, 410 kPa pressure and 10% (V/V) acid concentration. This study was preliminarily performed under hard anodization conditions, and in the future studies mild anodization conditions will be studied to be able to analyze the efficiency of this pioneering technique from all aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Lee, and S.J. Park, Chem. Rev. 114, 7487 (2014).

    Article  Google Scholar 

  2. W. Lee, JOM 62, 57 (2010).

    Article  Google Scholar 

  3. M.M. Lohrengel, Mater. Sci. Eng. R 11, 243 (1993).

    Article  Google Scholar 

  4. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R 39, 93 (2002).

    Article  Google Scholar 

  5. J.W. Diggle, T.C. Downie, and C.W. Goulding, Chem. Rev. 69, 365 (1969).

    Article  Google Scholar 

  6. S.R. Nicewarner-Peña, R.G. Freeman, B.D. Reiss, L. He, D.J. Peña, I.D. Walton, R. Cromer, C.D. Keating, and M.J. Natan, Science (80.-) 294, 137 (2001).

    Article  Google Scholar 

  7. W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, and U. Gösele, Nat. Nanotechnol. 3, 402 (2008).

    Article  Google Scholar 

  8. Z. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, and A. Javey, Nat. Mater. 8, 648 (2009).

    Article  Google Scholar 

  9. D. Ding, Z. Chen, S. Rajaputra, and V. Singh, Sens. Actuators, B Chem. 124, 12 (2007).

    Article  Google Scholar 

  10. Z. Huang, X. Zhang, M. Reiche, L. Ltu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, Nano Lett. 8, 3046 (2008).

    Article  Google Scholar 

  11. W. Lee, M. Alexe, K. Nielsch, and U. Gösele, Chem. Mater. 17, 3325 (2005).

    Article  Google Scholar 

  12. H. Masuda, and K. Fukuda, Science (80-.) 268, 1466 (1995).

    Article  Google Scholar 

  13. R.C. Furneaux, W.R. Rigby, and A.P. Davidson, Nature 337, 147 (1989).

    Article  Google Scholar 

  14. F. Li, L. Zhang, and R.M. Metzger, Chem. Mater. 10, 2470 (1998).

    Article  Google Scholar 

  15. Y. Lv, IOP Conf. Ser. Earth Environ. Sci. 100, 012022 (2017).

    Article  Google Scholar 

  16. G.J. Strijkers, J.H.J. Dalderop, M.A.A. Broeksteeg, H.J.M. Swagten, and W.J.M. De Jonge, J. Appl. Phys. 86, 5141 (1999).

    Article  Google Scholar 

  17. P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, and C.E. Blanco-Pinzon, Electrochem. Solid-State Lett. 9, B47 (2006).

    Article  Google Scholar 

  18. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, and H. Habazaki, Electrochim. Acta 52, 681 (2006).

    Article  Google Scholar 

  19. E. Gonzalez, M. Paulis, M.J. Barandiaran, and J.L. Keddie, Langmuir 29, 2044 (2013).

    Article  Google Scholar 

  20. O. Jessensky, F. Mü, and U. Gö, Appl. Phys. Lett. 72, 1173 (1998).

    Article  Google Scholar 

  21. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  22. A. Gelir, E. Alveroglu, M. Tulun, Y. Yilmaz, and H. Sözeri, Polym. Eng. Sci. 50, 843 (2010).

    Article  Google Scholar 

  23. S. Tabanli, A. Gelir, and Y. Yilmaz, Polym. Eng. Sci. 55, 406 (2015).

    Article  Google Scholar 

  24. Y. Yilmaz, A. Gelir, F. Salehli, R.R. Nigmatullin, and A.A. Arbuzov, J. Chem. Phys. 125, 234705 (2006).

    Article  Google Scholar 

  25. Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D.K. Aktas, S. Gogebakan, and A. Oner, Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 72, 332 (2009).

    Article  Google Scholar 

  26. E. Alveroglu, A. Gelir, and Y. Yilmaz, Macromol. Symp. 281, 174 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Scientific Research Projects of Istanbul Technical University (Grant No. TYL-2018-41075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gelir.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, Y., Gelir, A., Gomleksiz, A. et al. Hydrogel Based Anodization: A Novel Technique to Form Ordered Nano-sized Porous Oxide Layer on the Aluminum Surface. JOM 74, 787–793 (2022). https://doi.org/10.1007/s11837-021-05081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05081-3

Navigation