Skip to main content
Log in

Oxidation in Reused Powder Bed Fusion Additive Manufacturing Ti-6Al-4V Feedstock: A Brief Review

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Unmelted titanium alloy (Ti-6Al-4V) feedstock powder oxidizes during powder bed fusion additive manufacturing. This review focuses on the potential effect variations of the powder reuse method may have on the oxidation rate over multiple builds in both electron beam and laser powder bed fusion processes. No correlation of the oxidation rate based on the powder reuse method has been observed, but significant variation in the oxidation rate has been observed between reuse methods. The authors feel that these results highlight a need for better reporting of the details of the powder reuse method (e.g., mixing) to appropriately assess the potential for the reuse method to affect the oxidation rate. Recommendations for powder reuse and details for a higher level of reporting are provided. Multiple instances of variable oxidation rate within a given experiment have been observed. The implications of this heterogeneity on mechanical property variability might be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Commercial names are identified in order to adequately specify the experimental procedure. Such identification is not intended to imply recommendation or endorsement by the NIST, and nor does it imply that they are necessarily the best available for the purpose.

References

  1. N. Hrabe, N. Barbosa, S. Daniewicz, and N. Shamsaei, NIST Adv. Manuf. Ser. (2016). https://doi.org/10.6028/NIST.AMS.100-4

    Article  Google Scholar 

  2. T.T. Wohlers, I. Campbell, O. Diegel, R. Huff, and J. Kowen, Wohlers Report (Fort Collins: Wohlers Associates, 2019), pp. 1–369

  3. A. Totin, E. Macdonald, B. Conner, DSIAC J., 6(2), 201 (2019)

  4. D. Coney, M. Lasker, Aerospace Structural Metals Handbook. Code 3801 (1969)

  5. ASTM F1472-14, ASTM Standards (2014). https://doi.org/10.1520/F1472-14.2

  6. M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, and J.J. Lewandowski, JOM, 69(3), 439 (2017). https://doi.org/10.1007/s11837-017-2265-2

    Article  Google Scholar 

  7. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res., 46(1), 151 (2016). https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  8. S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, Progress Addi. Manuf., 4(4), 383 (2019). https://doi.org/10.1007/s40964-019-00078-6

    Article  Google Scholar 

  9. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Progress Mater. Sci., 92, 112 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  10. D. Powell, A. Rennie, L. Geekie, and N. Burns, J. Cleaner Product., (2020). https://doi.org/10.1016/j.jclepro.2020.122077

    Article  Google Scholar 

  11. N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, and J. Blackburn, J. Mater. Sci. Technol., 35(2), 242 (2019). https://doi.org/10.1016/j.jmst.2018.09.002

    Article  Google Scholar 

  12. Z. Snow, R. Martukanitz, and S. Joshi, Addit. Manuf., 28(2018), 78 (2019). https://doi.org/10.1016/j.addma.2019.04.017

    Article  Google Scholar 

  13. Z.Z. Fang, J.D. Paramore, P. Sun, K.S. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev., 63(7), 407 (2018). https://doi.org/10.1080/09506608.2017.1366003

    Article  Google Scholar 

  14. P. Kumar, K.S. Chandran, Metall. Mater. Trans. A, 48(5), 2301–2319 (2017). https://doi.org/10.1007/s11661-017-4009-x

    Article  Google Scholar 

  15. H. Conrad, Progress Mater. Sci., 26(2–4), 123 (1981). https://doi.org/10.1016/0079-6425(81)90001-3

    Article  Google Scholar 

  16. P. Sun, Z.Z. Fang, Y. Zhang, and Y. Xia, JOM, 69(10), 1853 (2017). https://doi.org/10.1007/s11837-017-2513-5

    Article  Google Scholar 

  17. F. Cao, T. Zhang, M.A. Ryder, and D.A. Lados, JOM, 70(3), 349 (2018). https://doi.org/10.1007/s11837-017-2728-5

    Article  Google Scholar 

  18. A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, and C.E. Duty, Int. J. Fatigue, 119(2018), 173 (2019). https://doi.org/10.1016/j.ijfatigue.2018.09.022

    Article  Google Scholar 

  19. A.M. Beese and B.E. Carroll, JOM, 68(3), 724 (2016). https://doi.org/10.1007/s11837-015-1759-z

    Article  Google Scholar 

  20. J. Li, X. Zhou, M. Brochu, N. Provatas, and Y.F. Zhao, Addit. Manuf., 31(2019), 100989 (2020). https://doi.org/10.1016/j.addma.2019.100989

    Article  Google Scholar 

  21. P.N. Sibisi, A.P. Popoola, N.K. Arthur, and S.L. Pityana, Int. J. Adv. Manuf. Technol., 107(3–4), 1163 (2020). https://doi.org/10.1007/s00170-019-04851-3

    Article  Google Scholar 

  22. S. Liu and Y.C. Shin, Mater. Des., (2019). https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  23. S.D. Luo, T. Song, S.L. Lu, B. Liu, J. Tian, and M. Qian, J. Alloys Comp., (2020). https://doi.org/10.1016/j.jallcom.2020.155526

    Article  Google Scholar 

  24. M. Yan, W. Xu, M. Dargusch, H. Tang, M. Brandt, and M. Qian, Powder Metall., 57(4), 251 (2014)

    Article  Google Scholar 

  25. M. Svensson, Material Properties of EBM-Manufactured Ti-6Al-4V & Ti-6Al-4V ELI Under Raw and HIP Conditions. Arcam AB Internal Report, pp. 1–47 (2009)

  26. W.A. Grell, E. Solis-Ramos, E. Clark, E. Lucon, E.J. Garboczi, P.K. Predecki, Z. Loftus, and M. Kumosa, Addit. Manuf., 17, 123 (2017). https://doi.org/10.1016/j.addma.2017.08.002

    Article  Google Scholar 

  27. H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, and J. Wang, JOM, 67(3), 555 (2015). https://doi.org/10.1007/s11837-015-1300-4

    Article  Google Scholar 

  28. O.A. Quintana and W. Tong, JOM, 69(12), 2693 (2017). https://doi.org/10.1007/s11837-017-2590-5

    Article  Google Scholar 

  29. V.V. Popov, A. Katz-Demyanetz, A. Garkun, and M. Bamberger, Addit. Manuf., 22(June), 834 (2018). https://doi.org/10.1016/j.addma.2018.06.003

    Article  Google Scholar 

  30. M. Velasco-Castro, E. Hernández-Nava, I.A. Figueroa, I. Todd, and R. Goodall, Heliyon, (2019). https://doi.org/10.1016/j.heliyon.2019.e02813

    Article  Google Scholar 

  31. C. Pauzon, K. Dietrich, P. Foret, S. Dubiez-LeGoff, E. Hryha, and G. Witt, Addit. Manuf., (2020). https://doi.org/10.1016/j.addma.2020.101765

    Article  Google Scholar 

  32. K. Dietrich, J. Diller, S. Dubiez-Le Goff, D. Bauer, P. Forêt, and G. Witt, Addit. Manuf., 32, 2020 (2019). https://doi.org/10.1016/j.addma.2019.100980

    Article  Google Scholar 

  33. G. Lindwall, P. Wang, U.R. Kattner, and C.E. Campbell, JOM, 70(9), 1692 (2018). https://doi.org/10.1007/s11837-018-3008-8

    Article  Google Scholar 

  34. B.E. Carroll, T.A. Palmer, and .M. Beese, Acta Mater., 87, 309 (2015). https://doi.org/10.1016/j.actamat.2014.12.054

    Article  Google Scholar 

  35. ASTM F2924-14, ASTM Standards (2014). https://doi.org/10.1520/F2924-14.2

  36. ASTM F3001-14, . ASTM Standards (2014). https://doi.org/10.1520/F3001-14

  37. I.E. Anderson, E.M. White, and R. Dehoff, Curr. Opin. Solid State Mater. Sci., 22(1), 8 (2018). https://doi.org/10.1016/j.cossms.2018.01.002

    Article  Google Scholar 

  38. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, and M.A. Peltz, J. Res. Natl. Instit. Stand. Technol., 119, 460 (2014). https://doi.org/10.6028/jres.119.018

    Article  Google Scholar 

  39. G. Jacob, A. Donmez, J. Slotwinski, and S. Moylan, Meas. Sci. Technol., 27, 11 (2016). https://doi.org/10.1088/0957-0233/27/11/115601

    Article  Google Scholar 

  40. AMS4999, Titanium Alloy Laser Deposited Product 6Al - 4V Annealed. SAE International (2016)

  41. ASTM F136-08, ASTM Standards ((Superseded)) (2008). https://doi.org/10.1520/F0136-08E01.2

  42. ASTM F1472-08, ASTM Standards ((Superseded)) (2008). https://doi.org/10.1520/F1472-08E01.2

  43. ASTM F1108-04, ASTM Standards ((Superseded)) (2009). https://doi.org/10.1520/F1108-04R09.2

  44. ASTM F136-13, ASTM Standards (2013). https://doi.org/10.1520/F0136-13.2

  45. ASTM F1108-14, ASTM Standards (2014). https://doi.org/10.1520/F1108-14.2

  46. ISO 17025, ISO Standards (Revised in 2017) (2005)

  47. S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, and R.B. Wicker, Mater. Technol., 24(3), 180 (2009). https://doi.org/10.1179/106678509X12475882446133

    Article  Google Scholar 

  48. A. Mohammadhosseini, D. Fraser, S.H. Masood, and M. Jahedi, Appl. Mech. Mater., 541–542, 160 (2014). https://doi.org/10.4028/www.scientific.net/AMM.541-542.160

  49. V. Petrovic and R. Niñerola, Aircraft Eng. Aerospace Technol., 87(2), 147 (2015). https://doi.org/10.1108/AEAT-11-2013-0212

    Article  Google Scholar 

  50. A. Strondl, O. Lyckfeldt, H. Brodin, and U. Ackelid, JOM, 67(3), 549 (2015). https://doi.org/10.1007/s11837-015-1304-0

    Article  Google Scholar 

  51. AMS4911N, Titanium Alloy, Sheet, Strip, and Plate 6Al - 4V Annealed. SAE International (2014)

  52. AMS4911R, Titanium Alloy, Sheet, Strip, and Plate 6Al - 4V Annealed. SAE International (2019)

  53. ASTM E1941-10, ASTM Standards (2016). https://doi.org/10.1520/E1941-10.2

  54. ASTM E1447-09, ASTM Standards ((Reapproved 2016)) (2009). https://doi.org/10.1520/E1447-09R16.2

  55. ASTM E1409-13, ASTM Standards (2013). https://doi.org/10.1520/E1409

  56. ASTM E2371-13, ASTM Standards (2013). https://doi.org/10.1520/E2371-13.2

  57. ASTM B215-15, ASTM Standards (2015). https://doi.org/10.1520/B0215-10.2

  58. ISO 22963:2008, Titanium and titanium alloys—Determination of oxygen—Infrared method after fusion under inert gas. ISO Standards (2008). https://www.iso.org/standard/41255.html

  59. P. Nandwana, W.H. Peter, R.R. Dehoff, L.E. Lowe, M.M. Kirka, F. Medina, and S.S. Babu, Metall. Mater. Trans. B, 47B(February), 754 (2016)

    Article  Google Scholar 

  60. ASTM E 23-16b, ASTM Standards (2016). https://doi.org/10.1520/E0023-12C.2

  61. ASTM E23-18, ASTM Standards (2018). https://doi.org/10.1520/E0023-18. www.astm.org

  62. C. Wei, X. Ma, X. Yang, M. Zhou, C. Wang, Y. Zheng, W. Zhang, and Z. Li,Mater. Lett., 221, 111 (2018). https://doi.org/10.1016/j.matlet.2018.03.124

    Article  Google Scholar 

  63. Y. Sun, M. Aindow, and R.J. Hebert, Addit. Manuf., 21(2017), 544 (2018). https://doi.org/10.1016/j.addma.2018.02.011

    Article  Google Scholar 

  64. Y. Sun, M. Aindow, R.J. Hebert, Mater. High Temp., 35(1–3), 217 (2018). https://doi.org/10.1080/09603409.2017.1389133

    Article  Google Scholar 

  65. R.P. Elliott, Diffusion in Titanium and Titanium Alloys. Air Force Technical Documentary Report ASD-TDR-62-561 (1962)

  66. M. Yan, M.S. Dargusch, T. Ebel, and M. Qian, Acta Mater., 68, 196 (2014). https://doi.org/10.1016/j.actamat.2014.01.015

    Article  Google Scholar 

  67. S. Chandrasekar, J.B. Coble, S. Yoder, P. Nandwana, R.R. Dehoff, V.C. Paquit, and S.S. Babu, Addit. Manuf., (2020). https://doi.org/10.1016/j.addma.2019.100994

    Article  Google Scholar 

  68. Y. Cao, M. Delin, F. Kullenberg, and L. Nyborg, Surf. Interface Anal., (2020). https://doi.org/10.1002/sia.6847

    Article  Google Scholar 

  69. G. Shanbhag and M. Vlasea, Manuf. Lett., (2020). https://doi.org/10.1016/j.mfglet.2020.07.007

    Article  Google Scholar 

  70. A. Montelione, S. Ghods, R. Schur, C. Wisdom, D. Arola, and M. Ramulu, Addit. Manuf., 35(2019), 1012016 (2020). https://doi.org/10.1016/j.addma.2020.101216

    Article  Google Scholar 

  71. R. Schur, S. Ghods, E. Schultz, C. Wisdom, R. Pahuja, A. Montelione, D. Arola, and M. Ramulu, J. Failure Anal. Prevent., (2020). https://doi.org/10.1007/s11668-020-00875-0

    Article  Google Scholar 

  72. S. Ghods, E. Schultz, C. Wisdom, R. Schur, R. Pahuja, A. Montelione, D. Arola, and M. Ramulu, Materialia, 9(2019), 100631 (2020). https://doi.org/10.1016/j.mtla.2020.100631

    Article  Google Scholar 

  73. V. Seyda, N. Kaufmann, and C. Emmelmann, Phys. Proc., 39, 425 (2012). https://doi.org/10.1016/j.phpro.2012.10.057

    Article  Google Scholar 

  74. R. O'Leary, R. Setchi, P. Prickett, G. Hankins, and N. Jones, An Investigation into the Recycling of Ti-6Al-4V Powder Used Within SLM to Improve Sustainability. SDM2015: 2nd International Conference on Sustainable Design and Manufacturing, (2015) pp. 14–17 (2015)

  75. L. Grainger, Investigating the Effects of Multiple Re-Use of Ti6Al4V Powder in Additive Manufacturing (AM) (Renishaw Pp, White Paper, 2016), pp. 1–10

    Google Scholar 

  76. K. Thejane, S. Chikosha, and W.B. du Preez, South African J. Ind. Eng., 28(3Spec. Edn), 161 (2017). https://doi.org/10.7166/28-3-1853

  77. O.A. Quintana, J. Alvarez, R. Mcmillan, W. Tong, and C. Tomonto, JOM, 70(9), 1863 (2018). https://doi.org/10.1007/s11837-018-3011-0

    Article  Google Scholar 

  78. ASTM B822-17, ASTM Standards (2017). https://doi.org/10.1520/B0822-17.2

  79. ASTM B213-17, ASTM Standards Superseded (2017). https://doi.org/10.1520/B0213-17.2

  80. ASTM B527-15, ASTM Standards Superseded (2015). https://doi.org/10.1520/B0527-15.2

  81. ASTM B213-20, ASTM Standards (2020). https://doi.org/10.1520/B0964-16.2

  82. ASTM B527-20, ASTM Standards (2020). https://doi.org/10.1520/B0527-15.2

  83. ASTM E8/E8M-16a, ASTM Standards (2016). https://doi.org/10.1520/E0008

  84. P.E. Carrion, A. Soltani-Tehrani, S.M. Thompson, and N. Shamsaei, Effect of powder degradation on the fatigue behavior of additively manufactured as-built Ti-6Al-4V. Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference pp. 1366–1372 (2018)

  85. P.E. Carrion, A. Soltani-Tehrani, N. Phan, and N. Shamsaei, JOM, 71(3), 963 (2019). https://doi.org/10.1007/s11837-018-3248-7

    Article  Google Scholar 

  86. L. Denti, A. Sola, S. Defanti, C. Sciancalepore, and F. Bondioli, Manuf. Technol., 19(2), 190 (2019)

    Google Scholar 

  87. L. Cordova, M. Campos, and T. Tinga, JOM, 71(3), 1062 (2019). https://doi.org/10.1007/s11837-018-3305-2

    Article  Google Scholar 

  88. F.J. Alamos, J. Schiltz, K. Kozlovsky, R. Attardo, C. Tomonto, T. Pelletiers, and S.R. Schmid, Int. J. Refr. Metals Hard Mater., 91(2019), 105237 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105273

    Article  Google Scholar 

  89. D. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd edn. (London: Hemisphere, 1981)

  90. V.L. Stout and M.D. Gibbons, J. Appl. Phys., 26(12), 1488 (1955). https://doi.org/10.1063/1.1721936

    Article  Google Scholar 

  91. R.L. Stow, Nature, 184, 542 (1959)

    Article  Google Scholar 

  92. K. Naito, T. Tsuji, T. Matsui, and K. Une, J. Nuclear Sci. Technol., 11(1), 22 (1974). https://doi.org/10.1080/18811248.1974.9730608

    Article  Google Scholar 

  93. N.P. Kherani and W.T. Shmayda, Fusion Technol., 8(2P2), 2399 (1985)

  94. P. Kofstad, J. Less-Common Metals, 12(6), 449 (1967). https://doi.org/10.1016/0022-5088(67)90017-3

    Article  Google Scholar 

  95. G.E. Camargo, Revista Materia, 12(3), 525 (2007)

    Article  Google Scholar 

  96. J. Stringer, Acta Metall., 8(11), 758 (1960). https://doi.org/10.1021/j100885a024

    Article  Google Scholar 

  97. J. Unnam, R.N. Shenoy, and R.K. Clark, Oxidat. Metals, 26(3/4), 231 (1986)

    Article  Google Scholar 

  98. H. Guleryuz and H. Cimenoglu, J. Alloys Comp., 472(1–2), 241 (2009). https://doi.org/10.1016/j.jallcom.2008.04.024

    Article  Google Scholar 

  99. F. Motte, C. Coddet, P. Sarrazin, M. Azzopardi, and J. Besson, Oxidat. Metals, 10(2), 113 (1976). https://doi.org/10.1007/BF00614241

    Article  Google Scholar 

  100. M.N. Mungole, N. Singh, and G.N. Mathur, Mater. Sci. Technol., 18(1), 111 (2002). https://doi.org/10.1179/026708301125000302

    Article  Google Scholar 

  101. Y. Wouters, A. Galerie, and J.P. Petit, Solid State Ionics, 104(1–2), 89 (1997). https://doi.org/10.1016/s0167-2738(97)00400-1

    Article  Google Scholar 

  102. J. Whiting and J. Fox, Characterization of feedstock in the powder bed fusion process: Sources of variation in particle size distribution and the factors that influence them. Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2016 pp. 1057–1068 (2016)

  103. C. Schade and G.K.N. Hoeganaes, Powder Metall., 7, 88 (2015). https://doi.org/10.31399/asm.hb.v07.a0006088

    Article  Google Scholar 

  104. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian, Mater. Sci. Eng. A, 573, 166 (2013). https://doi.org/10.1016/j.msea.2013.02.042

    Article  Google Scholar 

  105. M. Yan, Y. Liu, G.B. Schaffer, and M. Qian, Scr. Mater., 68(1), 63 (2013). https://doi.org/10.1016/j.scriptamat.2012.09.024

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jake Benzing, Ed Garboczi, and Justin Whiting for their helpful comments and discussions. This research was performed while N. Derimow held a National Research Council Postdoctoral Research Associateship at the National Institute of Standards and Technology (NIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Derimow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is an official contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derimow, N., Hrabe, N. Oxidation in Reused Powder Bed Fusion Additive Manufacturing Ti-6Al-4V Feedstock: A Brief Review. JOM 73, 3618–3638 (2021). https://doi.org/10.1007/s11837-021-04872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04872-y

Navigation