Skip to main content
Log in

Hylotelephium telephium Flower Extract-Mediated Biosynthesis of CuO and ZnO Nanoparticles with Promising Antioxidant and Antibacterial Properties for Healthcare Applications

  • Advances in Characterization of Powder Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present work mainly concentrates on the biosynthesis of copper oxide (CuO) nanoparticles (NPs) and zinc oxide (ZnO) nanoparticles using Hylotelephium telephium subsp. telephium flower extract. XRD study confirms the formation of monoclinic CuO NPs and hexagonal ZnO NPs. SEM and TEM analyses show that the CuO NPs were spherical in shape of 83 nm in size, whereas the ZnO NPs were irregular in shape of 36 nm in size. The synthesized nanoparticles have excellent antioxidant and antibacterial activities. The antioxidant activity results reveal that the synthesized nanoparticles exhibit excellent free radicals scavenging activity. A comparative study on the antibacterial activity of the chemically synthesized nanoparticles and biosynthesized nanoparticles was conducted and it was found that the biosynthesized nanoparticles possess better activities than the chemically synthesized nanoparticles. Hence, biosynthesis is a more advantageous and reliable method when compared to chemical synthesis for the production of nanoparticles for antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Yurum, Z.O. Kocabas-Ataklı, M. Sezen, R. Semiat, and Y. Yurum, Chem. Eng. J. 242, 321 (2014).

    Google Scholar 

  2. X. Liu, N. Bi, C. Feng, S.W. Or, Y. Sun, C. Jin, W. Li, and F. Xiao, J. Alloys Compd. 587, 1 (2014).

    Google Scholar 

  3. S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, and N. Muensit, Ceram. Int. 39, 2811 (2013).

    Google Scholar 

  4. B. Pal, S.S. Mallick, and B. Pal, Colloids Surf. A 459, 282 (2014).

    Google Scholar 

  5. R.P. Allaker and K. Memarzadeh, Int. J. Antimicrob. Agents 43, 95 (2014).

    Google Scholar 

  6. A. Singh, S. Kaur, A. Kaur, T. Aree, N. Kaur, N. Singh, and M.S. Bakshim, ACS Sustain. Chem. Eng. 2, 982 (2014).

    Google Scholar 

  7. R. Singh, L.U. Nawale, M. Arkile, U.U. Shedbalkar, S.A. Wadhwani, D. Sarkar, and B.A. Chopade, Int. J. Antimicrob. Agents 46, 183 (2015).

    Google Scholar 

  8. T. Wang and S. Liu, Powder Technol. 294, 280 (2016).

    Google Scholar 

  9. J. Ma, Y. Liu, Y. Bao, Z. Zhu, X. Wang, and J. Zhang, Ceram. Int. 39, 2803 (2013).

    Google Scholar 

  10. U.K. Parashar, P.S. Saxena, and A. Srivastava, Dig. J. Nanomater. Biostruct. 4, 159 (2009).

    Google Scholar 

  11. M. Gholami-Shabani, M. Shams-Ghahfarokhi, Z. Gholami-Shabani, A. Akbarzadeh, G. Riazi, S. Ajdari, A. Amani, and M. Razzaghi-Abyaneh, Process Biochem. 50, 1076 (2015).

    Google Scholar 

  12. E. Ismail, A. Diallo, M. Khenfouch, S.M. Dhlamini, and M. Maaza, J. Alloys Compd. 662, 283 (2016).

    Google Scholar 

  13. A. Sankaranarayanan, G. Munivel, G. Karunakaran, S. Kadaikunnan, N.S. Alharbi, J.M. Khaled, and D. Kuznetsov, J. Clust. Sci. 28, 995 (2017).

    Google Scholar 

  14. G. Karunakaran, M. Jagathambal, A. Gusev, N.V. Minh, E. Kolesnikov, A.R. Mandal, and D. Kuznetsov, IET Nanobiotechnol. 10, 425 (2016).

    Google Scholar 

  15. K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, and G. Adaikala Raj, Adv. Powder Technol. 26, 1639 (2015).

  16. G. Karunakaran, M. Jagathambal, N.V. Minh, E. Kolesnikov, and D. Kuznetsov, JOM 70, 1337 (2018).

    Google Scholar 

  17. M. Mesbahi-Nowrouzi and N. Mollania, J. Mol. Liq. 249, 1254 (2018).

    Google Scholar 

  18. G. Xu, X. Zhang, H. Cui, Z. Zhang, J. Ding, and J. Wu, Powder Technol. 301, 96 (2016).

    Google Scholar 

  19. B. Paul, B. Bhuyan, D.D. Purkayastha, and S.S. Dhar, J. Mol. Liq. 212, 813 (2015).

    Google Scholar 

  20. G. Karunakaran, M. Jagathambal, A. Gusev, J.A.L. Torres, E. Kolesnikov, and D. Kuznetsov, JOM 69, 1206 (2017).

    Google Scholar 

  21. S.C. Jovanovic, O.P. Jovanovic, Z.S. Mitic, T.D. Golubovic, B.K. Zlatkovic, and G.S. Stojanovic, Flavour Fragr. J. 32, 446 (2017).

    Google Scholar 

  22. J. Chen, S. Mao, Z. Xu, and W. Ding, RSC Adv. 9, 3788 (2019).

    Google Scholar 

  23. Nayantara and P. Kaur, Biotechnol. Res. Innov. 2, 63 (2018).

    Google Scholar 

  24. P. Dauthal and M. Mukhopadhyay, Ind. Eng. Chem. Res. 55, 9557 (2016).

    Google Scholar 

  25. A.M. Ismail, E.A. Mohamed, M.R. Marghany, F.F. Abdel-Motaal, I.B. Abdel-Farid, and M.A. El-Sayed, J. Saudi Soc. Agric. Sci. 15, 112 (2016).

    Google Scholar 

  26. A.W. Bauer, W.M. Kirby, J.C. Sherris, and M. Turck, Am. J. Clin. Pathol. 45, 493 (1966).

    Google Scholar 

  27. G. Karunakaran, R. Suriyaprabha, P. Manivasakan, R. Yuvakkumar, V. Rajendran, and N. Kannan, Ecotox. Environ. Saf. 93, 191 (2013).

    Google Scholar 

  28. A. Bhattacharjee and M. Ahmaruzzaman, Mater. Lett. 161, 79 (2015).

    Google Scholar 

  29. P.C. Nethravathi, G.S. Shruthi, D. Suresh, Udayabhanu, and H. Nagabhushana, Ceram. Int. 41, 8680 (2015).

    Google Scholar 

  30. M. Mabrouk, S.H. Kenawy, G.E. El-Bassyouni, A.A.E. Ibrahim Soliman, and E.M. Aly Hamzawy, Adv. Pharm. Bull. 9, 102 (2019).

    Google Scholar 

  31. S.K. Shinde, D.P. Dubal, G.S. Ghodake, P. Gomez-Romero, S. Kim, and V.J. Fulari, RSC Adv. 5, 30478 (2015).

    Google Scholar 

  32. F. Duman, I. Ocsoy, and F. OzturkKup, Mater. Sci. Eng. C 60, 333 (2016).

    Google Scholar 

  33. T. Gutul, E. Rusu, N. Condur, V. Ursaki, E. Goncearenco, and P. Vlazan, Beilstein J. Nanotechnol. 5, 402 (2014).

    Google Scholar 

  34. R. Dobrucka and J. Długaszewska, Saudi J. Biol. Sci. 23, 517 (2016).

    Google Scholar 

  35. A. Rajendran, E. Siva, C. Dhanraj, and S. Senthilkumar, J. Bioprocess Biotechnol. 8, 324 (2018).

    Google Scholar 

  36. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, and H. Sharghi, J. Nanomater. 720654, 1 (2015).

    Google Scholar 

  37. S. Paul, J.P. Saikia, S.K. Samdarshi, and B.K. Konwar, J. Magn. Magn. Mater. 321, 3621 (2009).

    Google Scholar 

  38. G. Karunakaran, M. Jagathambal, M. Venkatesh, G.S. Kumar, E. Kolesnikov, A. Dmitry, A. Gusev, and D. Kuznetsov, Powder Technol. 305, 488 (2017).

    Google Scholar 

  39. G. Karunakaran, M. Jagathambal, E. Kolesnikov, A. Dmitry, A. Ishteev, A. Gusev, and D. Kuznetsov, JOM 69, 1325 (2017).

    Google Scholar 

  40. G. Karunakaran, M. Jagathambal, A. Gusev, E. Kolesnikov, A.R. Mandal, and D. Kuznetsov, MRS Commun. 6, 41 (2016).

    Google Scholar 

  41. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A.A. Rahuman, Mater. Lett. 71, 114 (2012).

    Google Scholar 

  42. G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker, Int. J. Antimicrob. Agents 33, 587 (2009).

    Google Scholar 

  43. P. Bhadra, M.K. Mitra, G.C. Das, R. Dey, and S. Mukherjee, Mater. Sci. Eng. C 31, 929 (2011).

    Google Scholar 

  44. P.M. Narayanan, W.S. Wilson, A.T. Abraham, and M. Sevanan, BioNanoScience 2, 329 (2012).

    Google Scholar 

Download references

Acknowledgements

The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of increase Competitiveness Program of NUST “MISIS”, implemented by a governmental decree dated 16th of March 2013, N 211. This research was supported by the Korean Research Fellowship program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (KRF Grant No. 2018H1D3A1A01037054). Authors also acknowledge support under the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2019R1I1A1A01062458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopalu Karunakaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunakaran, G., Jagathambal, M., Kumar, G.S. et al. Hylotelephium telephium Flower Extract-Mediated Biosynthesis of CuO and ZnO Nanoparticles with Promising Antioxidant and Antibacterial Properties for Healthcare Applications. JOM 72, 1264–1272 (2020). https://doi.org/10.1007/s11837-020-04007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04007-9

Navigation