Skip to main content

Advertisement

Log in

Comparative Studies on Degradation Behavior of Pure Zinc in Various Simulated Body Fluids

  • Characterization of Biodegradable Medical Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The initial corrosion behavior of pure zinc during 168 h of immersion in Hanks’ solution, simulated body fluid (SBF), Dulbecco’s modified Eagles’ medium (DMEM), and DMEM with 10% fetal bovine serum (FBS) was investigated. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were performed on samples after immersion. The morphology and chemical composition of corrosion products were determined by environment scanning electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, and Fourier transform infrared spectrometer. The results demonstrated that pure Zn degraded at a rate of 0.01 mm yr−1 to 0.02 mm yr−1 in DMEM and DMEM + FBS and exhibited the highest corrosion rate in SBF. It was shown that the composition of solution was crucial for the evaluation of degradation behavior in vitro. Insoluble salts formation and organic components in DMEM retarded the degradation of Zn. The presence of proteins increased the polarization resistance while it also exacerbated localized corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Tapiero and K.D. Tew, Biomed. Pharm. 57, 399 (2003).

    Article  Google Scholar 

  2. P. Meerarani, G. Reiterer, M. Toborek, and B. Hennig, J. Nutr. 133, 3058 (2003).

    Article  Google Scholar 

  3. E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, and M. Vedani, Acta Biomater. 71, 1 (2018).

    Article  Google Scholar 

  4. J. Ma, N. Zhao, and D. Zhu, ACS Biomater. Sci. Eng. 1, 1174 (2015).

    Article  Google Scholar 

  5. H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, W. Li, W. Yuan, H. Guo, H. Li, G. Yang, D. Kong, D. Zhu, K. Takashima, L. Ruan, J. Nie, X. Li, and Y. Zheng, Biomaterials 145, 92 (2017).

    Article  Google Scholar 

  6. G. Katarivas Levy, J. Goldman, and E. Aghion, Metals 7, 402 (2017).

    Article  Google Scholar 

  7. P.K. Bowen, J. Drelich, and J. Goldman, Adv. Mater. 25, 2577 (2013).

    Article  Google Scholar 

  8. Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R 77, 1 (2014).

    Article  Google Scholar 

  9. H. Yang, X. Qu, W. Lin, C. Wang, D. Zhu, K. Dai, and Y. Zheng, Acta Biomater. 71, 200 (2018).

    Article  Google Scholar 

  10. H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, and L. Qin, Sci. Rep. 5, 10719 (2015).

    Article  Google Scholar 

  11. H.F. Li, H.T. Yang, Y.F. Zheng, F.Y. Zhou, K.J. Qiu, and X. Wang, Mater. Des. 83, 95 (2015).

    Article  Google Scholar 

  12. P.K. Bowen, R.J. Guillory 2nd, E.R. Shearier, J.M. Seitz, J. Drelich, M. Bocks, F. Zhao, and J. Goldman, Mater. Sci. Eng. C Mater. Biol. Appl. 56, 467 (2015).

    Article  Google Scholar 

  13. A.J. Drelich, S. Zhao, R.J. Guillory 2nd, J.W. Drelich, and J. Goldman, Acta Biomater. 58, 539 (2017).

    Article  Google Scholar 

  14. S. Johnston, M. Dargusch, and A. Atrens, Sci. China Mater. 61, 475 (2017).

    Article  Google Scholar 

  15. N.T. Kirkland, J. Waterman, N. Birbilis, G. Dias, T.B. Woodfield, R.M. Hartshorn, and M.P. Staiger, J. Mater. Sci. Mater. Med. 23, 283 (2012).

    Article  Google Scholar 

  16. R.C. Zeng, X.T. Li, S.Q. Li, F. Zhang, and E.H. Han, Sci. Rep. 5, 13026 (2015).

    Article  Google Scholar 

  17. R.Q. Hou, N. Scharnagl, F. Feyerabend, and R. Willumeit-Romer, Corros. Sci. 132, 35 (2018).

    Article  Google Scholar 

  18. A. Yamamoto and S. Hiromoto, Mater. Sci. Eng. C 29, 1559 (2009).

    Article  Google Scholar 

  19. J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, and G.J. Dias, J. Biomed. Mater. Res. B Appl. Biomater. 100, 1134 (2012).

    Article  Google Scholar 

  20. J. Zhang, N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, M. Xiong, and G. Yuan, Corros. Sci. 85, 477 (2014).

    Article  Google Scholar 

  21. A. Kocijan, I. Milosev, and B. Pihlar, J. Mater. Sci. Mater. Med. 14, 69 (2003).

    Article  Google Scholar 

  22. K. Torne, M. Larsson, A. Norlin, and J. Weissenrieder, J. Biomed. Mater. Res. B Appl. Biomater. 104, 1141 (2016).

    Article  Google Scholar 

  23. K. Beaussant Törne, A. Örnberg, and J. Weissenrieder, Electrochim. Acta 258, 1476 (2017).

    Article  Google Scholar 

  24. I. Marco, A. Myrissa, E. Martinelli, F. Feyerabend, R. Willumeit-Romer, A.M. Weinberg, and O. Van der Biest, Eur. Cell Mater. 33, 90 (2017).

    Article  Google Scholar 

  25. J. Wang, Y. Jang, G. Wan, V. Giridharan, G.L. Song, Z. Xu, Y. Koo, P. Qi, J. Sankar, N. Huang, and Y. Yun, Corros. Sci. 104, 277 (2016).

    Article  Google Scholar 

  26. R.-C. Zeng, X.-T. Li, L.-J. Liu, S.-Q. Li, and F. Zhang, J. Mater. Sci. Technol. 32, 437 (2016).

    Article  Google Scholar 

  27. K. Torne, A. Ornberg, and J. Weissenrieder, Acta Biomater. 48, 541 (2017).

    Article  Google Scholar 

  28. M. Ascencio, M. Pekguleryuz, and S. Omanovic, Corros. Sci. 87, 489 (2014).

    Article  Google Scholar 

  29. O. Pawlig and R. Trettin, Mater. Res. Bull. 34, 1959 (1999).

    Article  Google Scholar 

  30. A. Nazarov, E. Diler, D. Persson, and D. Thierry, J. Electroanal. Chem. 737, 129 (2015).

    Article  Google Scholar 

  31. P.K. Bowen, J. Drelich, and J. Goldman, Acta Biomater. 10, 1475 (2014).

    Article  Google Scholar 

  32. C. Liu, Y. Xin, X. Tian, and P.K. Chu, J. Mater. Res. 22, 1806 (2011).

    Article  Google Scholar 

  33. A. Barth, Biochim. Biophys. Acta 1767, 1073 (2007).

    Article  Google Scholar 

  34. J. Winiarski, W. Tylus, and B. Szczygieł, Appl. Surf. Sci. 364, 455 (2016).

    Article  Google Scholar 

  35. L.S. Dake, D.R. Baer, and J.M. Zachara, Surf. Interface Anal. 14, 71 (1989).

    Article  Google Scholar 

  36. G. Ballerini, K. Ogle, and M.G. Barthés-Labrousse, Appl. Surf. Sci. 253, 6860 (2007).

    Article  Google Scholar 

  37. M. Sano, T. Adaniya, T. Fujitani, and J. Nakamura, Surf. Sci. 514, 261 (2002).

    Article  Google Scholar 

  38. R.K. Brow and J. Non-Cryst, Solids 194, 267 (1996).

    Google Scholar 

  39. C.-Y. Tsai, J.-S. Liu, P.-L. Chen, and C.-S. Lin, Corros. Sci. 52, 3385 (2010).

    Article  Google Scholar 

  40. J. Rodriguez, L. Chenoy, A. Roobroeck, S. Godet, and M.G. Olivier, Corros. Sci. 108, 47 (2016).

    Article  Google Scholar 

  41. T. Hanawa, S. Hiromoto, and K. Asami, Appl. Surf. Sci. 183, 68 (2001).

    Article  Google Scholar 

  42. T. Li, Y. He, J. Zhou, S. Tang, Y. Yang, and X. Wang, Mater. Lett. 217, 227 (2018).

    Article  Google Scholar 

  43. L.-Y. Li, B. Liu, R.-C. Zeng, S.-Q. Li, F. Zhang, Y.-H. Zou, H.G. Jiang, X.-B. Chen, S.-K. Guan, and Q.-Y. Liu, Front. Mater. Sci. 12, 184 (2018).

    Article  Google Scholar 

  44. F. El-Taib Heakal, O.S. Shehata, and N.S. Tantawy, Corros. Sci. 86, 285 (2014).

    Article  Google Scholar 

  45. M. Mouanga and P. Berçot, Corros. Sci. 52, 3993 (2010).

    Article  Google Scholar 

  46. Y.W. Liu, Z.Y. Wang, G.W. Cao, Y. Cao, and Y. Huo, Mater. Chem. Phys. 198, 243 (2017).

    Article  Google Scholar 

  47. L.-Y. Cui, Y. Hu, R.-C. Zeng, Y.-X. Yang, D.-D. Sun, S.-Q. Li, F. Zhang, and E.-H. Han, J. Mater. Sci. Technol. 33, 971 (2017).

    Article  Google Scholar 

  48. F. El-Taib Heakal, A.M. Fekry, and M. Abd El-Barr Jibril, Corros. Sci. 53, 1174 (2011).

    Article  Google Scholar 

  49. X.N. Gu, Y.F. Zheng, and L.J. Chen, Biomed. Mater. 4, 065011 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 51431002 and 51871004), NSFC/RGC Joint Research Scheme (Grant 5161101031), and National Key Research and Development Program of China (Grant 2016YFC1102402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, H., Liu, Y. et al. Comparative Studies on Degradation Behavior of Pure Zinc in Various Simulated Body Fluids. JOM 71, 1414–1425 (2019). https://doi.org/10.1007/s11837-019-03357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03357-3

Navigation