Skip to main content
Log in

Effect of Twinning Behavior on Dynamic Recrystallization During Extrusion of AZ31 Mg Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A new severe plastic deformation method, viz. integrated dual-directional extrusion and spiral deformation, was adopted to process AZ31 Mg alloy and found to be very effective for refining the grains and softening the texture. We also investigated how twinning in AZ31 alloy affected the dynamic recrystallization (DRX) during hot extrusion, revealing that multiple twins can offer increased nucleation sites and enough energy to trigger DRX. Moreover, even after dual-directional extrusion and spiral deformation, a misorientation angle of ~ 86° remained between the primary tension twin and matrix or ~ 60° between the secondary tension twin and primary twin, being induced by {10–12} tension twin variants (primary and secondary) and resulting in a dispersed misorientation angle distribution. Nucleation of DRX occurred at the tip of preexisting twins, although primary and secondary tension twins can also act as nucleation sites for DRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Xie, J. Shen, F.B. Gong, D. Wu, T. Zhang, X. Luo, and Y. Li, Int. J. Adv. Manuf. Technol. 82, 75 (2016).

    Article  Google Scholar 

  2. R. Elliott, K. Coley, S. Mostaghel, and M. Barat, Miner. Met. Mater. Soc. 70, 681 (2018).

    Google Scholar 

  3. Y. Liu, F. Li, and H.W. Jiang, Int. J. Adv. Manuf. Technol. 92, 4293 (2017).

    Article  Google Scholar 

  4. J.B. Patel, X.L. Yang, C.L. Mendis, and Z.Y. Fan, Miner. Met. Mater. Soc. 69, 1071 (2017).

    Article  Google Scholar 

  5. F. Li, H.W. Jiang, and Q. Chen, Int. J. Adv. Manuf. Technol. 90, 73 (2017).

    Article  Google Scholar 

  6. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, J. Alloys Compd. 673, 327 (2016).

    Article  Google Scholar 

  7. H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan, and Z.W. Ou, Int. J. Adv. Manuf. Technol. 74, 423 (2014).

    Article  Google Scholar 

  8. W.W. Lei, W. Liang, H.X. Wang, and H.W. Guo, Miner. Met. Mater. Soc. 69, 2297 (2017).

    Article  Google Scholar 

  9. H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan, and Z.W. Ou, Int. J. Adv. Manuf. Technol. 76, 1621 (2015).

    Article  Google Scholar 

  10. V.S. Rao, B.P. Kashyap, N. Prabhu, and P.D. Hodgson, Mater. Sci. Eng. A 486, 341 (2008).

    Article  Google Scholar 

  11. B. Talebanpour, R. Ebrahimi, and K. Janghorban, Mater. Sci. Eng. A 527, 141 (2009).

    Article  Google Scholar 

  12. P. Palai, N. Prabhu, and B.P. Kashyap, J. Mater. Eng. Perform. 26, 1825 (2017).

    Article  Google Scholar 

  13. Y. Xu, L.X. Hu, Y. Sun, J.B. Jia, J.F. Jiang, and Q.G. Ma, Trans. Nonferr. Met. Soc. China. 25, 381 (2015).

    Article  Google Scholar 

  14. Y. Liu, S. Cai, and L. Dai, Mater. Sci. Eng. A 65, 878 (2016).

    Article  Google Scholar 

  15. F. Li, H.W. Jiang, and Y. Liu, Miner. Met. Mater. Soc. 69, 93 (2017).

    Article  Google Scholar 

  16. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé, Philos. Mag. 90, 2161 (2010).

    Article  Google Scholar 

  17. P. Molnár, A. Jäger, and P. Lejček, Scripta Mater. 67, 467 (2012).

    Article  Google Scholar 

  18. Y.L. Chen, L. Jin, J. Dong, Z.Y. Zhang, and F.H. Wang, Mater. Charact. 118, 363 (2016).

    Article  Google Scholar 

  19. Z.R. Zeng, Y.M. Zhu, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Scripta Mater. 107, 127 (2015).

    Article  Google Scholar 

  20. L.W. Lu, T.M. Liu, Y. Chen, L.G. Wang, and Z.C. Wang, Mater. Des. 35, 138 (2012).

    Article  Google Scholar 

  21. E. Popova, A.P. Brahme, Y. Staraselski, S.R. Agnew, R.K. Mishra, and K. Inal, Mater. Des. 96, 446 (2016).

    Article  Google Scholar 

  22. F. Li, X. Zeng, and N. Bian, Mater. Lett. 135, 79 (2014).

    Article  Google Scholar 

  23. J. Stráská, M. Janeček, J. Čížek, J. Stráský, and B. Hadzima, Mater. Charact. 94, 69 (2014).

    Article  Google Scholar 

  24. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).

    Article  Google Scholar 

  25. S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, and B.S. You, J. Alloys Compd. 667, 170 (2016).

    Article  Google Scholar 

  26. Q.S. Yang, B. Jiang, H.C. Pan, B. Song, Z.T. Jiang, J.H. Dai, L.F. Wang, and F.S. Pan, J. Magnes. Alloy. 2, 220 (2014).

    Article  Google Scholar 

  27. Q.S. Yang, B. Jiang, J.J. He, B. Song, W.J. Liu, H.W. Dong, and F.S. Pan, Mater. Sci. Eng. A 612, 187 (2014).

    Article  Google Scholar 

  28. Q. Ma, B. Li, E.B. Marin, and S.J. Horstemeyer, Scr. Mater. 65, 823 (2011).

    Article  Google Scholar 

  29. S.W. Xu, K. Oh-ishi, S. Kamado, and T. Homma, Scr. Mater. 65, 875 (2011).

    Article  Google Scholar 

  30. J. Su, A.S.H. Kabir, M. Sanjari, and S. Yue, Mater. Sci. Eng. A 674, 343 (2016).

    Article  Google Scholar 

  31. W. Guo, Q.D. Wang, B. Ye, and H. Zhou, J. Alloys Compd. 552, 409 (2013).

    Article  Google Scholar 

  32. J.B. Lin, X.Y. Wang, W.J. Ren, X.X. Yang, and Q.D. Wang, J. Mater. Sci. Technol. 32, 783 (2016).

    Article  Google Scholar 

  33. F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Mater. Sci. Eng. A 588, 318 (2013).

    Article  Google Scholar 

  34. Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Scr. Mater. 108, 6 (2015).

    Article  Google Scholar 

  35. L.W. Lu, T.M. Liu, Y. Chen, and Z.C. Wang, Mater. Charact. 67, 93 (2012).

    Article  Google Scholar 

  36. L.W. Lu, T.M. Liu, M.J. Tan, J. Chen, and Z.C. Wang, Mater. Des. 39, 131 (2012).

    Article  Google Scholar 

  37. F. Li, X. Zeng, and G.J. Cao, Mater. Sci. Eng. A 639, 395 (2015).

    Article  Google Scholar 

  38. D. Peláez, C. Isaza, J.M. Meza, P. Fernández-Morales, W.Z. Misiolek, and E. Mendoza, J. Mater. Res. Technol. 4, 392 (2015).

    Article  Google Scholar 

  39. C.J. Li, H.F. Sun, X.W. Li, J.L. Zhang, W.B. Fang, and Z.Y. Tan, J. Alloys Compd. 652, 122 (2015).

    Article  Google Scholar 

  40. Z.C. Wang, M. Saito, K.P. McKenna, and Y. Ikuhara, Nat. Commun. 5, 32 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grants Nos. 51505143 and 51704112) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 17B089) with financial support from the China Postdoctoral Science Foundation (Grant No. 2016T90759).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Lu or Zhongchang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Liu, X., Shi, D. et al. Effect of Twinning Behavior on Dynamic Recrystallization During Extrusion of AZ31 Mg Alloy. JOM 71, 1566–1573 (2019). https://doi.org/10.1007/s11837-019-03336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03336-8

Navigation