Skip to main content
Log in

Simulation and Modeling in High Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High entropy alloys (HEAs) is a fascinating field of research, with an increasing number of new alloys discovered. This would hardly be conceivable without the aid of materials modeling and computational alloy design to investigate the immense compositional space. The simplicity of the microstructure achieved contrasts with the enormous complexity of its composition, which, in turn, increases the variety of property behavior observed. Simulation and modeling techniques are of paramount importance in the understanding of such material performance. There are numerous examples of how different models have explained the observed experimental results; yet, there are theories and approaches developed for conventional alloys, where the presence of one element is predominant, that need to be adapted or re-developed. In this paper, we review of the current state of the art of the modeling techniques applied to explain HEAs properties, identifying the potential new areas of research to improve the predictability of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. Rivera-Díaz-Del-Castillo, J. Alloys Compd. 566, 217 (2013).

    Article  Google Scholar 

  2. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  3. J.S. Wróbel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, and S.L. Dudarev, Phys. Rev. B 91, 024108 (2015).

    Article  Google Scholar 

  4. Z. Leong, J.S. Wróbel, S.L. Dudarev, R. Goodall, I. Todd, and D. Nguyen-Manh, Sci. Rep.-UK 7, 39803 (2017).

    Article  Google Scholar 

  5. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  6. M. Widom, W.P. Huhn, S. Maiti, and W. Steurer, Metall. Mater. Trans. A 45, 196 (2014).

    Article  Google Scholar 

  7. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  8. R. Raghavan, K.C. Hari, Kumar, and B.S. Murty, J. Alloys Compd. 544, 152 (2012)

    Article  Google Scholar 

  9. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, Calphad 45, 1 (2014).

    Article  Google Scholar 

  10. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Calphad 50, 32 (2015).

    Article  Google Scholar 

  11. I. Toda-Caraballo, J.S. Wróbel, S.L. Dudarev, D. Nguyen-Manh, and P.E.J. Rivera-D-az-Del-Castillo, Acta Mater. 97, 156 (2015).

    Article  Google Scholar 

  12. Z. Wang, W. Qiu, Y. Yang, and C.T. Liu, Intermetallics 64, 63 (2015).

    Article  Google Scholar 

  13. Y.F. Ye, C.T. Liu, and Y. Yang, Acta Mater. 94, 152 (2015).

    Article  Google Scholar 

  14. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Acta Mater. 94, 124 (2015).

    Article  Google Scholar 

  15. I. Toda-Caraballo and P.E.J. Rivera-Díaz-Del-Castillo, Acta Mater. 85, 14 (2015).

    Article  Google Scholar 

  16. I. Toda-Caraballo, Scripta Mater. 127, 113 (2017).

    Article  Google Scholar 

  17. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  18. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  19. M.G. Poletti and L. Battezzati, Acta Mater. 75, 297 (2014).

    Article  Google Scholar 

  20. S. Guo and C.T. Liu, Prog. Nat. Sci. 21, 433 (2011).

    Article  Google Scholar 

  21. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  22. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao, MRS Commun. 4, 57 (2014).

    Article  Google Scholar 

  23. I. Toda-Caraballo and P.E.J. Rivera-Díaz-Del-Castillo, Intermetallics 71, 76 (2016).

    Article  Google Scholar 

  24. F. Tancret, I. Toda-Caraballo, E. Menou, and P.E.J. Rivera Díaz-Del-Castillo, Mater. Des. 115, 486 (2017).

    Article  Google Scholar 

  25. L. Asensio Dominguez, R. Goodall, I. Todd, Mater. Sci. Tech.-UK 31, 1201 (2015)

  26. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, Metall. Mater. Trans. A 47, 3322 (2016).

    Article  Google Scholar 

  27. R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Entropy 18, 333 (2016).

    Article  Google Scholar 

  28. A.B. Melnick and V.K. Soolshenko, J. Alloys Compd. 694, 223 (2017).

    Article  Google Scholar 

  29. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, J. Alloys Compd. 696, 1139 (2017).

    Article  Google Scholar 

  30. D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Acta Mater. 98, 288 (2015).

    Article  Google Scholar 

  31. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, editors, High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer, Cham, 2016).

    Google Scholar 

  32. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  33. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  34. Y. Dong, Y. Lu, J. Kong, J. Zhang, and T. Li, J. Alloys Compd. 573, 96 (2013).

    Article  Google Scholar 

  35. A. Kumar and M. Gupta, Metals 6, 199 (2016).

    Article  Google Scholar 

  36. Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Intermetallics 52, 105 (2014).

    Article  Google Scholar 

  37. A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, Intermetallics 53, 112 (2014).

    Article  Google Scholar 

  38. I. Toda-Caraballo and P.E.J. Rivera-Díaz del Castillo, JOM 67, 108 (2015).

    Article  Google Scholar 

  39. H.K.D.H. Bhadeshia, Stat. Ana. Data Min. 1, 296 (2009).

    Article  MathSciNet  Google Scholar 

  40. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  41. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).

    Article  Google Scholar 

  42. B. Zhang, M.C. Gao, Y. Zhang, S. Yang, and S.M. Guo, Mater. Scie. Tech.-UK 31, 1207 (2015).

  43. T. Gómez-Acebo, B. Navarcorena, and F. Castro, J. Phase Equilib. Diff. 25, 237 (2004).

    Article  Google Scholar 

  44. C. Guéneau, N. Dupin, B. Sundman, C. Martial, J.C. Dumasean, S. Gossé, S. Chataine, F.D. Bruycker, D. Manara, and R.J.M. Konings, J. Nucl. Mater. 419, 145 (2011).

    Article  Google Scholar 

  45. R. Mathieu, N. Dupin, J.-C. Crivello, K. Yaqoob, A. Breidi, J.-M. Fiorani, N. David, and J.-M. Joubert, Calphad 43, 18 (2013).

    Article  Google Scholar 

  46. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).

    Article  Google Scholar 

  47. F. He, A. Wang, Y. Li, Q. Wu, J. Li, J. Wang, and C.T. Liu, Sci. Rep. 6, 34628 (2016).

    Article  Google Scholar 

  48. N.G. Jones, R. Izzo, P.M. Mignanelli, K.A. Christofidou, and H.J. Stone, Intermetallics 71, 43 (2016).

    Article  Google Scholar 

  49. E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del Castillo, Acta Mater. 128, 120 (2017)

    Article  Google Scholar 

  50. G. B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).

    Google Scholar 

  51. R. Li, S. Lu, D. Kim, S. Schnecker, J. Zhao, S.K. Kwon, and L. Vitos, J. Phy. Condens. Matter 28, 395001 (2016).

    Article  Google Scholar 

  52. S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmstrm, and L. Vitos, Scripta Mater. 108, 44 (2015).

    Article  Google Scholar 

  53. A. van de Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).

    Article  Google Scholar 

  54. M.S. Lucas, D. Belyea, C. Bauser, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Howarth, S.L. Semiatin, M.E. McHenry, and C.W. Miller, J. Appl. Phys. 113, 17A923 (2013).

    Article  Google Scholar 

  55. M.Y. Lavrentiev, D. Nguyen-Manh, and S.L. Dudarev, Phys. Rev. B 81, 184202 (2010).

    Article  Google Scholar 

  56. M. Calvo-Dahlborg, J. Cornide, J. Tobola, D. Nguyen-Manh, J.S. Wróbel, J. Juraszek, S. Jouen, and U Dahlborg, J. Phys. D Appl. Phys. 50, 185002 (2017).

    Article  Google Scholar 

  57. J. Connolly and A. Williams, Phys. Rev. B 27, 5169 (1983).

    Article  Google Scholar 

  58. M.E.J. Newman and G.T. Barkema, Monte Carlo methods in statistical physics. Springer, Berlin (1999).

    MATH  Google Scholar 

  59. A. Fernández-Caballero, J.S. Wróbel, P.M. Mummery, and D. Nguyen-Manh, J. Phase Equilibria Diffus. 38, 391 (2017).

    Article  Google Scholar 

  60. M.Y. Lavrentiev, J.S. Wróbel, D. Nguyen-Manh, and S.L. Dudarev, Phys. Chem. Chem. Phys. 16, 16049 (2014).

    Article  Google Scholar 

  61. E.J. Pickering, R. Murioz-Mureno, H.J. Stone, and N.G. Jones, Scripta Mater. 113, 106 (2016).

    Article  Google Scholar 

  62. M. W. Finnis, Interatomic Forces in Condensed Matter. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  63. M. Aoki, D. Nguyen-Manh, V. Vitek, and D.G. Pettifor, Prog. Mat. Sci. 52, 154 (2007).

    Article  Google Scholar 

  64. D. Nguyen-Manh, V. Vitek, and A.P. Horsfield, Prog. Mater. Sci. 52, 255 (2007).

    Article  Google Scholar 

  65. M. Mrovec, D. Nguyen-Manh, C. Elsasser, and P. Gumbsch, Phys. Rev. Lett. 106, 246402 (2011).

    Article  Google Scholar 

  66. M.W. Finnis and J.E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  Google Scholar 

  67. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  68. M.I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  Google Scholar 

  69. S.L. Dudarev and P.M. Derlet, J. Phys: Condens. Matter 17, 7097 (2005).

    Google Scholar 

  70. F. Gransberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).

    Article  Google Scholar 

  71. W.M. Choi, Y. Kim, D. Seol, and B.J. Lee, Comput. Mater. Sci. 130, 121 (2017).

    Article  Google Scholar 

  72. Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami, JOM 65, 1848 (2013).

    Article  Google Scholar 

  73. M.S. Anzorena, A.A. Bertolo, L. Gagetti, A.J. Kreiner, H.O. Mosca, G. Bozzolo, and M.F. del Grosso, Mater. Des. 111, 382 (2016).

    Article  Google Scholar 

  74. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev, J. Alloys Compd. 652, 266 (2015).

    Article  Google Scholar 

  75. J. Wang, Y. Liu, B. Liu, Y. Wang, Y. Cao, T. Li, and R. Zhou, Mater. Sci. Eng. A 689, 233 (2017).

    Article  Google Scholar 

  76. L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Scripta Mater. 112, 54 (2016).

    Article  Google Scholar 

  77. Q. Yao, S.-L. Shang, Y.-J. Hu, Y. Wang, Y. Wang, Y.-H. Zhu, and Z.-K. Liu, Intermetallics 78, 1 (2016).

    Article  Google Scholar 

  78. Q. Yao, S.-L. Shang, K. Wang, F. Liu, Y. Wang, Q. Wang, T. Lu, and Z.-K. Liu, J. Mater. Res. 32, 2100 (2017).

    Article  Google Scholar 

  79. P. Pérez, Corros. Sci. 49, 1172 (2007).

    Article  Google Scholar 

  80. P. Pérez, G. Salmi, A. Muñoz, and M.A. Monge, Scripta Mater. 60, 1008 (2009).

    Article  Google Scholar 

  81. P. Pérez, V.A.C. Haanappel, and M.F. Stroosnijder, Oxid. Met. 53, 481 (2000).

    Article  Google Scholar 

  82. P. Pérez, V.A.C. Haanappel, and M.F. Stroosnijder. Mater. Sci. Eng. A, 284, 126, (2000).

    Article  Google Scholar 

  83. J.J. Van de Broek and J.L. Meijering, Acta Metall. 16, 375 (1968).

  84. S. Wang, Y. Wu, F. Gesmundo, and Y. Niu, Oxid. Met. 65, 299 (2006).

    Google Scholar 

  85. X.J. Zhang, S.Y. Wang, F. Gesmundo, and Y. Niu, Oxid. Met. 69, 151 (2008).

    Google Scholar 

  86. P. Pérez, J.L. González-Carrasco, and P. Adeva, Oxid. Met. 48, 143 (1997).

    Article  Google Scholar 

  87. D.L. Douglass, Corros. Sci. 8, 665 (1968).

    Article  Google Scholar 

  88. P. Pérez and P. Adeva, Oxid. Met. 65, 15 (2006).

    Article  Google Scholar 

  89. H. Lai, Y. Cao, P. Viklund, F. Karlsson, L.-G. Johansson, and K. Stiller, Oxid. Met. 80, 505 (2013).

    Article  Google Scholar 

  90. W. Kai, W.L. Jang, R.T. Huang, C.C. Lee, H.H. Hsieh, and C.F. Du, Oxid. Met. 63, 169 (2005).

    Article  Google Scholar 

  91. W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Corros. Sci. 121, 116 (2017).

    Article  Google Scholar 

  92. T.K. Tsao, A.C. Yeh, C.M. Kuo, and H. Murakami, Entropy 18, 62 (2016).

    Article  Google Scholar 

  93. M.B. Karpetz, E.S. Makarenko, A.N. Mislibchenko, N.A. Krapibka, B.F. Gorban, S.J. Makarenko, Metallofiz. Noveishie Tekhnol 36, 829 (2014) (in Russian).

    Article  Google Scholar 

  94. T.M. Butler, J.P. Alfano, R.L. Martens, and M.L. Weaver, JOM 67, 246 (2015).

    Article  Google Scholar 

  95. J. Dabrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Intermetallics 84, 52 (2017).

    Article  Google Scholar 

  96. H. Prasad, S. Singh, and B.B. Panigrahi, J. Alloys Compd. 692, 720 (2017).

    Article  Google Scholar 

  97. S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).

    Article  Google Scholar 

  98. H.M. Daoud, A.M. Manzoni, R. Völkl, N. Wanderka, and U. Glatzel, Adv. Eng. Mater. 17, 1134 (2015).

    Article  Google Scholar 

  99. T.M. Butler and M.L. Weaver, J. Alloys Compd. 674, 229 (2016).

    Article  Google Scholar 

  100. Y.X. Liu, C.Q Cheng, J.L. Shang, R. Wang, P. Li, and J. Zhao, Trans. Nonferrous Met. Soc. China 25, 1341 (2015).

    Article  Google Scholar 

  101. G.R. Holcomb, J. Tylczak, and C. Carney, JOM 67, 2326 (2015).

    Article  Google Scholar 

  102. Y.J. Chang and A.C. Yeh, J. Alloys Compd. 653, 379 (2015).

    Article  Google Scholar 

  103. W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Corros. Sci. 108, 209 (2016).

    Article  Google Scholar 

  104. C. Huang, Y. Zhang, J. Shen, and R. Vilar, Surf. Coat. Technol. 206, 1389 (2011).

    Article  Google Scholar 

  105. T.M. Butler and M.L. Weaver, Metals 6, 222 (2016).

    Article  Google Scholar 

  106. B. Gorr, F. Müller, M. Azim, H.J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier, Oxid. Met. (2017). doi:10.1007/s11085-016-9696-y.

    Google Scholar 

  107. B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, J. Alloys Compd. 688, 468 (2016).

    Article  Google Scholar 

  108. O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, J. Mater. Sci. 47, 6522 (2012).

    Article  Google Scholar 

  109. C.M. Liu, H.M. Wang, S.Q. Zhan, H.B. Tang, and A.L. Zhang, J. Alloys Compd. 583, 162 (2014).

    Article  Google Scholar 

  110. B. Gorr, M. Azim, H.J. Christ, T Mueller, D. Schliephake, and M. Heilmaier, J. Alloys Compd 624, 270 (2015).

    Article  Google Scholar 

  111. P. Kofstad, High Temperature Corrosion. (Elsevier Applied Science, London/New York 1988).

    Google Scholar 

  112. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Article  Google Scholar 

  113. F. Gesmundo, F. Viani, Y. Niu, and D.L. Douglass, Oxid. Met. 40, 373 (1993).

    Article  Google Scholar 

  114. F. Gesmundo, F. Viani, Y. Niu, and D.L. Douglass, Oxid. Met. 42, 239 (1994).

    Article  Google Scholar 

  115. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 45, 51 (1996).

    Article  Google Scholar 

  116. P. Saltykov, O. Fabrichnaya, J. Golczewski, and F. Aldinger, J. Alloys Compd. 381, 99 (2004).

    Article  Google Scholar 

  117. V.K. Tolpygo and D.R. Clarke, Acta Mater. 46, 5167 (1998).

    Article  Google Scholar 

  118. L.H. Rettberg, B. Laux, M.Y. He, D. Hovis, A.H. Heuer, T.M. Pollock, Metall. Mater. Trans. 47A, 1132 (2016)

    Article  Google Scholar 

  119. Y. Suo and S. Shen, Acta Mech. 226, 3375 (2015).

    Article  MathSciNet  Google Scholar 

  120. N.K. Das, T. Shoji, and Y. Takeda, Corros. Sci. 226, 3375 (2010).

    Google Scholar 

Download references

Acknowledgements

I.T.C. is grateful for financial support of the fellowship 2016-T2/IND-1693, from the Programme Atracción de talento investigador (Consejería de Educación, Juventud y Deporte, Comunidad de Madrid). J.S.W. acknowledges the financial support from the Foundation of Polish Science Grant HOMING (No. Homing/2016-1/12). The HOMING programme is co-financed by the European Union under the European Regional Development Fund. The simulations were partially carried out by J.S.W. with the support of the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, under Grant No. GA69-30. The work at CCFE has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053 and funding from the RCUK Energy Programme [Grant No. EP/P012450/1]. The views and opinions expressed here do not necessarily reflect those of the European Commission. D.N.M. would like to acknowledge the support from Marconi-Fusion, the High Performance Computer at the CINECA headquarters in Bologna (Italy), for its provision of supercomputer resources. P.E.J.R.D.C.’s work was supported by Grant EP/L025213/1 from the UK Engineering and Physical Sciences Research Council (EPSRC). He is grateful to Prof. Claudio Paoloni for the provision of laboratory facilities at Lancaster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Toda-Caraballo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toda-Caraballo, I., Wróbel, J.S., Nguyen-Manh, D. et al. Simulation and Modeling in High Entropy Alloys. JOM 69, 2137–2149 (2017). https://doi.org/10.1007/s11837-017-2524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2524-2

Navigation