Skip to main content
Log in

Data-Enabled Quantification of Aluminum Microstructural Damage Under Tensile Loading

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The study of material failure with digital analytics is in its infancy and offers a new perspective to advance our understanding of damage initiation and evolution in metals. In this article, we study the failure of aluminum using data-enabled methods, statistics and data mining. Through the use of tension tests, we establish a multivariate acoustic-data matrix of random damage events, which typically are not visible and are very difficult to measure due to their variability, diversity and interactivity during damage processes. Aluminium alloy 6061-T651 and single crystal aluminium with a (111) orientation were evaluated by comparing the collection of acoustic signals from damage events caused primarily by slip in the single crystal and multimode fracture of the alloy. We found the resulting acoustic damage-event data to be large semi-structured volumes of Big Data with the potential to be mined for information that describes the materials damage state under strain. Our data-enabled analyses has allowed us to determine statistical distributions of multiscale random damage that provide a means to quantify the material damage state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.K.S. Jardine, D. Lin, and D. Banjevic, Mech. Syst. Signal Process. 20, 1483 (2006).

    Article  Google Scholar 

  2. F.K.Y. Jhang, Int. J. Preci. Eng. Manuf. 10, 123 (2009).

    Article  Google Scholar 

  3. M.A. Hamstad, Exp. Mech. 26, 7 (1986).

    Article  Google Scholar 

  4. M. Browne, A. Roques, and A. Taylor, J. Strain Anal. Eng. Des. 40, 59 (2005).

    Article  Google Scholar 

  5. G. Sposito, C. Ward, P. Cawley, P.B. Nagy, and C. Scruby, NDT E Int. 43, 555 (2010).

    Article  Google Scholar 

  6. H. Carreon, B. Lakshminarayan, W.I. Faidi, A.H. Nayfeh, and P.B. Nagy, NDT E Int. 36, 339 (2003).

    Article  Google Scholar 

  7. C.U. Grosse and M. Ohtsu, Acoustic Emission Testing (Berlin: Springer, 2008).

    Book  Google Scholar 

  8. G. Qi, M. Fan, and S.F. Wayne, IEEE Trans. Instrum. Meas. 60, 206 (2011).

    Article  Google Scholar 

  9. T. Shiotani, K. Fujii, T. Aoki, and K. Amou, Progress in Acoustic Emission 7, Sapporo, Japan (1994), pp. 529–534.

  10. M. Ohtsu, Res. Nondestruct. Eval. 6, 169 (1995).

    Article  Google Scholar 

  11. M. Ohtsu, T. Okamoto, and S. Yuyama, ACI Struct. J. 95, 87 (1998).

    Google Scholar 

  12. M. Fan and G. Qi, Mech. Syst. Signal Process. 37, 455 (2013).

    Article  Google Scholar 

  13. P.C. Chang, A. Flatau, and S.C. Liu, Struct. Health Monit. 2, 257 (2003).

    Article  Google Scholar 

  14. J.M.W. Brownjohn, Philos. Trans. R. Soc. A 365, 589 (2007).

    Article  Google Scholar 

  15. R. Yan and R.X.G. Gao, I.E.E.E. Trans. Instrum. Meas. 55, 2320 (2006).

    Article  Google Scholar 

  16. F. Greitzer and R. A. Pawlowski, in International Instrumentation Symposium, San Diego, CA (2002).

  17. P. Vecer, M. Kreidl, and R. Šmíd, Acta Polytech. 45, 35 (2005).

    Google Scholar 

  18. D. Balageas, C.-P. Fritzen, and A. Güemes, Introduction to Structural Health Monitoring (London, UK: ISTE; New York: Wiley, 2006).

  19. V. Giurgiutiu, A. Zagrai, and J.J. Bao, Struct. Health Monit. 1, 41 (2002).

    Article  Google Scholar 

  20. M.N. Bassim, S.S. Lawrence, and C.D. Liu, Eng. Fract. Mech. 47, 207 (1994).

    Article  Google Scholar 

  21. H.L. Dunegan, D.O. Harris, and C.A. Tatro, Eng. Fract. Mech. 1, 105 (1968).

    Article  Google Scholar 

  22. G. Qi and A.A. Barhorst, Eng. Fract. Mech. 58, 363 (1997).

    Article  Google Scholar 

  23. G. Qi, M. Fan, G. Lewis, and S.F. Wayne, J. Mater. Sci. Mater. Med. 23, 217 (2012).

    Article  Google Scholar 

  24. A. G. Battie (ed.), Acoustic Emission, Principles and Instrumentation, Report SAND82-2825 (Livermore, CA, Sandia National Lab, 1983), pp. 141.

  25. R.C. McMaster, Nondestructive Testing Handbook, 2nd ed. (ASNT: Columbus, 1982).

    Google Scholar 

  26. H. R. J. Hardy, Acoustic Emission Microseismic Activity Volume 1: Principles, Techniques and Geotechnical Applications, vol. 1 (Lisse, The Netherlands: Taylor and Francis, 2003).

  27. W.D. Callister Jr and D.J. Rethwisch, Materials Science and Engineering, 8th ed. (New York: Wiley, 2010).

    Google Scholar 

  28. J. Pujol, Elastic Wave Propagation and Generation in Seismology (Cambridge: Cambridge University Press, 2003).

    Book  Google Scholar 

  29. N. Kiesewetter and P. Schiller, Phys. Status Solidi (a) 38, 569 (1976).

    Article  Google Scholar 

  30. G. Qi, A.A. Barhorst, and J. Hashemi, Compos. Sci. Technol. 57, 389 (1997).

    Article  Google Scholar 

  31. G. Qi and S. Wayne, J. Nondest. Eval. 33, 597 (2014).

    Article  Google Scholar 

  32. G. Qi and J. Li, NDT E Int. 40, 378 (2014).

    Article  Google Scholar 

  33. A. Vinogradov, I.S. Yasnikov, and Y. Estrin, J. Appl. Phys. 115, 233506 (2014).

    Article  Google Scholar 

  34. S. Miura, K. Hamashima, and S. Hashimoto, Mem. Fac. Eng. Kyoto Univ. 47, 79 (1985).

    Google Scholar 

  35. M.A. Bhatia, K.N. Solanki, A. Moitra, and M.A. Tschopp, Metall. Mater. Trans. A 44, 617 (2013).

    Article  Google Scholar 

  36. W.Z. Han, G.M. Cheng, S.X. Li, S.D. Wu, and Z.F. Zhang, Phys. Rev. Lett. 101, 115505 (2008).

    Article  Google Scholar 

  37. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8, 95 (2009).

    Article  Google Scholar 

  38. M. D. Bhandarkar and W. B. Lisagor, NASA Technical Paper 1086 (1977).

  39. D. Broek, Eng. Fract. Mech. 5, 55 (1973).

    Article  Google Scholar 

  40. R. Pascual, Scr. Metall. 8, 1461 (1974).

    Article  Google Scholar 

  41. C.R. Heiple, S.H. Carpenter, and M.J. Carr, Metall. Sci. 15, 587 (1981).

    Article  Google Scholar 

  42. A. Ghahremaninezhad and K. Ravi-Chandar, Int. J. Fract. 174, 177 (2012).

    Article  Google Scholar 

  43. A. Agarwal, J.R. Frederick, and D.K. Felbeck, Metall. Mater. Trans. B 1, 1069 (1970).

    Google Scholar 

  44. C. Scruby, H. Wadley, and J.E. Sinclair, Philos. Mag. A 44, 249 (1981).

    Article  Google Scholar 

  45. Z. Jian and W. Hejing, Chin. J. Geochem. 22, 38 (2003).

    Article  Google Scholar 

  46. H. Agarwal, A.M. Gokhale, S. Graham, and M.F. Horstemeyer, Mater. Sci. Eng., A 341, 35 (2003).

    Article  Google Scholar 

  47. D.F. Andrews, Biometrics, 28, 125 (1972).

  48. J.H. Zar, Encyclopedia of Biostatistics, ed. P. Armitage and T. Colton (Chichester: Wiley, 1998).

  49. G. Qi, J. Li, and M. Fan, J. Probab. Eng. Mech. 33, 103 (2013).

    Article  Google Scholar 

  50. G. Qi, S.F. Wayne, and M. Fan, IEEE Trans. 60, 206 (2011).

    Google Scholar 

  51. L. Koenczoel, A. Hiltner, and E. Baer, Polymer Compos. 8, 109 (1987).

    Article  Google Scholar 

  52. A. Siegmann and R.G. Kander, J. Mater. Sci. Lett. 10, 619 (1991).

    Article  Google Scholar 

  53. G. Qi and S. Wayne, Innovative Unified Damage Mechanisms-Based Model to Predict Remaining Useful Life for Rotorcraft Structures, US NAVY, NAVAIR STTR project (2015).

Download references

Acknowledgements

We gratefully acknowledge Dr. Sanjay Mishra for his assistance with x-ray diffraction, Lou Boykins for EDAX anaysis and the research contributions of our students Ehab Atwa, Raihan Mir and Austin Carter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Wayne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wayne, S.F., Qi, G. & Zhang, L. Data-Enabled Quantification of Aluminum Microstructural Damage Under Tensile Loading. JOM 68, 2096–2108 (2016). https://doi.org/10.1007/s11837-016-2044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2044-5

Keywords

Navigation