Skip to main content

Advertisement

Log in

Overview of Cellulose Nanomaterials, Their Capabilities and Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is happening because of the unique combination of characteristics (e.g., high mechanical properties, sustainability, and large-scale production potential) and utility across a broad spectrum of material applications (e.g. as an additive, self-sustaining structures, and template structures) that CNs offer. Despite the challenges typical for materials development, CN and near-CN production is ramping up with pilot scale to industry demonstration trials, and the first commercial products are starting to hit the marketplace. This review provides a broad overview of CNs and their capabilities that are enabling new application areas for cellulose-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Estimates were based off of a May 2016 Web of Science search, with a manuscript title search for Cellulose AND (nanofib* OR nanowhisk* OR nanocrystal* OR microfib* OR nanomaterial*) OR Nanocellulose.

References

  1. D. Klemm, B. Heublein, H.P. Fink, and A. Bohn, Angew. Chem. Int. Ed. 44, 3358 (2005).

    Article  Google Scholar 

  2. Y. Habibi, L.A. Lucia, and O.J. Rojas, Chem. Rev. 110, 3479 (2010).

    Article  Google Scholar 

  3. Y. Habibi, Chem. Soc. Rev. 43, 1519 (2014).

    Article  Google Scholar 

  4. N. Lin and A. Dufresne, Eur. Polym. J. 59, 302 (2014).

    Article  Google Scholar 

  5. M. Roman, Ind. Biotechnol. 11, 25 (2015).

    Article  Google Scholar 

  6. F. Hansen, V. Brun, E. Keller, T. Wegner, M. Meador, and L. Friedersdorf, Cellulose Nanomaterials—A Path Towards Commercialization Workshop Report (U.S.D.A. Forest Service, 2014), http://www.fpl.fs.fed.us/documnts/pdf2014/usforestservice_nih_2014_cellulose_nano_workshop_report.pdf. Accessed 15 June 2016.

  7. A.W. Carpenter, C.-F. de Lannoy, and M.R. Wiesner, Environ. Sci. Technol. 49, 5277 (2015).

    Article  Google Scholar 

  8. N. Duran, A.P. Lemes, and A.B. Seabra, Recent Pat. Nanotechnol. 6, 16 (2012).

    Article  Google Scholar 

  9. H. Charreau, M.L. Foresti, and A. Vazquez, Recent Pat. Nanotechnol. 7, 56 (2013).

    Article  Google Scholar 

  10. L. Brinchi, F. Cotana, E. Fortunati, and J.M. Kenny, Carbohydr. Polym. 94, 154 (2013).

    Article  Google Scholar 

  11. S. Kalia, A. Dufresne, B.M. Cherian, B.S. Kaith, L. Averous, J. Njuguna, and E. Nassiopoulos, Int. J. Polym. Sci. (2011). doi:10.1155/2011/837875.

  12. O. Nechyporchuk, M.N. Belgacem, and J. Bras, Ind. Crops Prod. (2016). doi:10.1016/j.indcrop.2016.02.016.

  13. Y. Ching, M.E. Ali, L. Abdullah, K. Choo, Y. Kuan, S. Julaihi, C. Chuah, and N. Liou, Cellulose 23, 1011 (2016).

    Article  Google Scholar 

  14. C.S. Davis, D.L. Grolman, A. Karim, and J.W. Gilman, Green Mater. 3, 53 (2015).

    Article  Google Scholar 

  15. K. Oksman, Y. Aitomäki, A.P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X. Zhou, and S. Hooshmand, Compos. A 83, 2 (2016).

    Article  Google Scholar 

  16. J.P.F. Lagerwall, C. Schutz, M. Salajkova, J. Noh, J.H. Park, G. Scalia, and L. Bergstrom, NPG Asia Mater. 6, e80 (2014).

    Article  Google Scholar 

  17. N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Carbohydr. Polym. 90, 735 (2012).

    Article  Google Scholar 

  18. M. Mariano, N. El Kissi, and A. Dufresne, J. Polym. Sci. 52, 791 (2014).

    Article  Google Scholar 

  19. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev. 40, 3941 (2011).

    Article  Google Scholar 

  20. J.A. Shatkin and B. Kim, Environ. Sci Nano 2, 477 (2015).

    Article  Google Scholar 

  21. H. Zhu, Z. Fang, C. Preston, Y. Li, and L. Hu, Energy Environ. Sci. 7, 269 (2014).

    Article  Google Scholar 

  22. D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, and A. Dorris, Angew. Chem. Int. Ed. 50, 5438 (2011).

    Article  Google Scholar 

  23. R.M.A. Domingues, M.E. Gomes, and R.L. Reis, Biomacromolecules 15, 2327 (2014).

    Article  Google Scholar 

  24. M. Kaushik and A. Moores, Green Chem. 18, 622 (2016).

    Article  Google Scholar 

  25. C. Gomez, H.A. Serpa, J. Velasquez-Cock, P. Ganan, C. Castro, L. Velez, and R. Zuluaga, Food Hydrocoll. 57, 178 (2016).

    Article  Google Scholar 

  26. J.A. Shatkin, T.H. Wegner, E.M. Bilek, and J. Cowie, Tappi J. 13, 9 (2014).

    Google Scholar 

  27. M.T. Postek, R.J. Moon, A.W. Rudie, and M.A. Bilodeau, Production and Applications of Cellulose Nanomaterials (Peachtree Corners: TAPPI Press, 2013).

    Google Scholar 

  28. K. Oksman, A.P. Mathew, A. Bismarck, O. Rojas, and M. Sain, eds., Handbook of Green Materials (New York: World Scientific, 2014).

    Google Scholar 

  29. FiberLean Technologies. http://www.fiberlean.com/fiberleanmfc. Accessed 15 June 2016.

  30. C. Macdonald, Celluforce’s NCC has a few promising applications (Pulp & Paper Canada, 2016), http://www.pulpandpapercanada.com/news/celluforces-ncc-has-a-few-promising-applications-1100000148. Acccessed 15 June 2016.

  31. Mitsubishi Pencil, Uni-Ball Signo307. http://www.uni-ball.co.th/en/product/uniball-signo-307.html. Accessed 15 June 2016.

  32. Nippon Paper Industries Co.Ltd, Launch of World’s First Commercial Products Made of Functional Cellulose Nanofibers, http://www.nipponpapergroup.com/english/news/year/2015/news150916003182.html. Accessed 15 June 2016.

  33. J. Miller, Nanocellulose State of the Industry-December 2015 (Market-Intell LLC, 2015), http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industry-dec-2015.pdf. Accessed 15 June 2016.

  34. J. Cowie, E.M. Bilek, T.H. Wegner, and J.A. Shatkin, Tappi J. 13, 57 (2014).

    Google Scholar 

  35. P. Gatenholm and D. Klemm, MRS Bull. 35, 208 (2010).

    Article  Google Scholar 

  36. A. Isogai, J. Wood Sci. 59, 449 (2013).

    Article  Google Scholar 

  37. H.P.S.A. Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid, Carbohydr. Polym. 99, 649 (2014).

    Article  Google Scholar 

  38. H.P.S.A. Khalil, A.H. Bhat, and A.F.I. Yusra, Carbohydr. Polym. 87, 963 (2012).

    Article  Google Scholar 

  39. G. Siqueira, J. Bras, and A. Dufresne, Polymers 2, 728 (2010).

    Article  Google Scholar 

  40. ISO, Standard terms and their definitions for cellulose nanomaterials (ISO/AWI TS 20477 Nanotechnologies, underdevelopement), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=68153. Accessed 15 June 2016.

  41. L. Chen, Q. Wang, K. Hirth, C. Baez, U.P. Agarwal, and J.Y. Zhu, Cellulose 22, 1753 (2015).

    Article  Google Scholar 

  42. R. Reiner and A. Rudie, Production and Applications of Cellulose Nanomaterials, ed. M.T. Postek, R.J. Moon, A.W. Rudie, and M.A. Bilodeau (Peachtree Corners: TAPPI Press, 2013), p. 177.

    Google Scholar 

  43. The Process Development Center, Nanofiber Development (UMaine), http://umaine.edu/pdc/nanofiber-r-d/. Accessed 15 June 2016.

  44. R. Reiner and A. Rudie, Production and Applications of Cellulose Nanomaterials, ed. M.T. Postek, R.J. Moon, A.W. Rudie, and M.A. Bilodeau (Peachtree Corners, GA: TAPPI Press, 2013), p. 21.

  45. CelluForce, NCC, http://celluforce.com/en/. Accessed 15 June 2016.

  46. American Process Incorporated, BioPlus, http://americanprocess.com/bioplus/. Accessed 15 June 2016.

  47. Kruger, FiloCell, http://filocell.com/en/. Accessed 15 June 2016.

  48. Bluegoose, BGB Ultra, http://bluegoosebiorefineries.com. Accessed 15 June 2016.

  49. S. Eyley and W. Thielemans, Nanoscale 6, 7764 (2014).

    Article  Google Scholar 

  50. J.W. Grate, K.-F. Mo, Y. Shin, A. Vasdekis, M.G. Warner, R.T. Kelly, G. Orr, D. Hu, K.J. Dehoff, F.J. Brockman, and M.J. Wilkins, Bioconjugate Chem. 26, 593 (2015).

    Article  Google Scholar 

  51. A.G. Dumanli, H.M. van der Kooij, G. Kamita, E. Reisner, J.J. Baumberg, U. Steiner, and S. Vignolini, ACS Appl. Mater. Interfaces 6, 12302 (2014).

    Article  Google Scholar 

  52. H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan, and L. Hu, Nanoscale 5, 3787 (2013).

    Article  Google Scholar 

  53. K. Kuemmerer, J. Menz, T. Schubert, and W. Thielemans, Chemosphere 82, 1387 (2011).

    Article  Google Scholar 

  54. F.L. Dri, L.G. Hector, R.J. Moon, and P.D. Zavattieri, Cellulose 20, 2703 (2013).

    Article  Google Scholar 

  55. J.A. Diaz, Z. Ye, X. Wu, A.L. Moore, R.J. Moon, A. Martini, D.J. Boday, and J.P. Youngblood, Biomacromolecules 15, 4096 (2014).

    Article  Google Scholar 

  56. F.L. Dri, X. Wu, R.J. Moon, A. Martini, and P.D. Zavattieri, Comput. Mater. Sci. 109, 330 (2015).

    Article  Google Scholar 

  57. X. Wu, R.J. Moon, and A. Martini, Cellulose 21, 2233 (2014).

    Article  Google Scholar 

  58. J. Vartiainen, T. Pohler, K. Sirola, L. Pylkkanen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, and A. Laukkanen, Cellulose 18, 775 (2011).

    Article  Google Scholar 

  59. Q. Li, S. McGinnis, C. Sydnor, A. Wong, and S. Renneckar, ACS Sustain. Chem. Eng. 1, 919 (2013).

    Article  Google Scholar 

  60. M. Hervy, S. Evangelisti, P. Lettieri, and K.-Y. Lee, Compos. Sci. Technol. 118, 154 (2015).

    Article  Google Scholar 

  61. M.M.D. Lima and R. Borsali, Macromol. Rapid Commun. 25, 771 (2004).

    Article  Google Scholar 

  62. H. Chen, Y. Ding, and A. Lapkin, Powder Technol. 194, 132 (2009).

    Article  Google Scholar 

  63. M.-C. Li, Q. Wu, K. Song, S. Lee, Y. Qing, and Y. Wu, ACS Sustain. Chem. Eng. 3, 821 (2015).

    Article  Google Scholar 

  64. C. Miao and W.Y. Hamad, Cellulose 20, 2221 (2013).

    Article  Google Scholar 

  65. J.-H. Kim, B.S. Shim, H.S. Kim, Y.-J. Lee, S.-K. Min, D. Jang, Z. Abas, and J. Kim, Int. J. Precis. Eng. Manufact. Green Technol. 2, 197 (2015).

    Article  Google Scholar 

  66. A.B. Reising, R.J. Moon, and J.P. Youngblood, J. Sci. Technol. For. Prod. Process. 2, 32 (2012).

    Google Scholar 

  67. W.S. Chen, H.P. Yu, Q. Li, Y.X. Liu, and J. Li, Soft Matter 7, 10360 (2011).

    Article  Google Scholar 

  68. H. Sehaqui, M. Salajkova, Q. Zhou, and L.A. Berglund, Soft Matter 6, 1824 (2010).

    Article  Google Scholar 

  69. T.C.F. Silva, Y. Habibi, J.L. Colodette, T. Elder, and L.A. Lucia, Cellulose 19, 1945 (2012).

    Article  Google Scholar 

  70. L. Heath and W. Thielemans, Green Chem. 12, 1448 (2010).

    Article  Google Scholar 

  71. M. Paakko, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindstrom, L.A. Berglund, and O. Ikkala, Soft Matter 4, 2492 (2008).

    Article  Google Scholar 

  72. R. Bardet, N. Belgacem, and J. Bras, ACS Appl. Mater. Interfaces 7, 4010 (2015).

    Article  Google Scholar 

  73. S. Beck, J. Bouchard, and R. Berry, Biomacromolecules 12, 167 (2011).

    Article  Google Scholar 

  74. H.Y. Ma, C. Burger, B.S. Hsiao, and B. Chu, Biomacromolecules 12, 970 (2011).

    Article  Google Scholar 

  75. W. Thielemans, C.R. Warbey, and D.A. Walsh, Green Chem. 11, 531 (2009).

    Article  Google Scholar 

  76. H. Zhang, Y. She, S. Song, Q. Lang, and J. Pu, J. Adhes. Sci. Technol. 27, 1023 (2013).

    Article  Google Scholar 

  77. S. Veigel, J. Rathke, M. Weigl, and W. Gindl-Altmutter, J. Nanomater. (2012). doi:10.1155/2012/158503.

  78. N. Ayrilmis, Y.-K. Lee, J.H. Kwon, T.-H. Han, and H.-J. Kim, Build. Sci. 97, 82 (2016).

    Google Scholar 

  79. E. Mahrdt, S. Pinkl, C. Schmidberger, H.W.G. van Herwijnen, S. Veigel, and W. Gindl-Altmutter, Cellulose 23, 571 (2016).

    Article  Google Scholar 

  80. F.W. Brodin, O.W. Gregersen, and K. Syverud, Nord. Pulp Pap. Res. J. 29, 156 (2014).

    Article  Google Scholar 

  81. T. Taipale, M. Osterberg, A. Nykanen, J. Ruokolainen, and J. Laine, Cellulose 17, 1005 (2010).

    Article  Google Scholar 

  82. R. Bardet and J. Bras, Handbook of Green Materials: 1 Bionanomaterials: Separation Processes, Characterization and Properties, eds. K. Oksman, A.P. Mathew, A. Bismarck, O. Rojas, and S. Mohini (New York, NY: World Scientific, 2014), p. 207.

  83. V. Kumar, A. Elfving, H. Koivula, D. Bousfield, and T. Martto, Ind. Eng. Chem. Res. 55, 3603 (2016).

    Article  Google Scholar 

  84. M.-C. Li, Q. Wu, K. Song, Y. Qing, Y. Wu, and A.C.S. Appl, Mater. Interfaces 7, 5006 (2015).

    Article  Google Scholar 

  85. V. Lafitte, J.C. Lee, S.A. Ali and P.F. Sullivan, US patent application number: 13/834,841 (2013).

  86. F. Ridi, E. Fratini, and P. Baglioni, J. Colloid Interface Sci. 357, 255 (2011).

    Article  Google Scholar 

  87. F. Pacheco-Torgal and S. Jalali, Constr. Build. Mater. 25, 575 (2011).

    Article  Google Scholar 

  88. K.E. Kurtis, MRS Bull. 40, 1102 (2015).

    Article  Google Scholar 

  89. American Concrete Institue, Report on fiber reinforced concrete (Reapproved 2009) 544.1R-96 (ACI, 2009), https://www.concrete.org/store/productdetail.aspx?ItemID=544196. Accessed 15 June 2016.

  90. Y. Cao, P. Zavaterri, J. Youngblood, R. Moon, and J. Weiss, Cem. Concr. Compos. 56, 73 (2015).

    Article  Google Scholar 

  91. J. Claramunt, M. Ardanuy, and L.J. Fernandez-Carrasco, BioResources 10, 3045 (2015).

    Article  Google Scholar 

  92. F. Mohammadkazemi, K. Doosthoseini, E. Ganjian, and M. Azin, Construct. Build. Mater. 101, 958 (2015).

    Article  Google Scholar 

  93. H.C. Gomez, A. Serpa, J. Velasquez-Cock, P. Ganan, C. Castro, L. Velez, and R. Zuluaga, Food Hydrocoll. 57, 178 (2016).

    Article  Google Scholar 

  94. Y. Zhao, J. Simonsen, G. Cavender, J. Jung, and L. Fuchigami, US patent application number 20140272013 A1 (2014).

  95. J. Jung, Z. Deng, J. Simonsen, R.M. Bastias, and Y. Zhao, Sci. Hortic. 200, 161 (2016).

    Article  Google Scholar 

  96. J. Jung, G. Cavender, J. Simonsen, and Y. Zhao, J. Agric. Food Chem. 63, 3031 (2015).

    Article  Google Scholar 

  97. N. Thi Thi, M. Nogi, and K. Suganuma, J. Mater. Chem. C 1, 5235 (2013).

    Article  Google Scholar 

  98. S. Khan, L. Lorenzelli, and R.S. Dahiya, IEEE Sens. J. 15, 3164 (2015).

    Article  Google Scholar 

  99. Y.H. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, and B. Kippelen, Sci. Rep. 3, 1536 (2013). doi:10.1038/srep01536.

  100. Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng, V.W. Yang, H. Mi, M. Kim, S.J. Cho, D.-W. Park, H. Jiang, J. Lee, Y. Qiu, W. Zhou, Z. Cai, S. Gong, and Z. Ma, Nat. Commun. 6, 7170 (2015). doi:10.1038/ncomms8170.

  101. N. Petersen and P. Gatenholm, Appl. Microbiol. Biotechnol. 91, 1277 (2011).

    Article  Google Scholar 

  102. M. Jorfi and E.J. Foster, J. Appl. Polym. Sci. (2015). doi:10.1002/APP.41719.

  103. D. Klemm, F. Kramer, H. Ahrem, V. Kopsch, T. Richter, W. Fried, U. Udhard, A. Sterner-Kock, M. Scherner, S. Reutter, and J. Wipperrnann, Handbook of Green Materials: 1 Bionanocomposites: Processing, Characterization and Properties, eds. K. Oksman, A.P. Mathew, A. Bismarck, O. Rojas, and S. Mohini (New York, NY: World Scientific, 2014), p. 217.

  104. Dermafill. http://www.dermafill.com/. Accessed on 15 June 2016.

  105. D.A. Schumann, J. Wippermann, D.O. Klemm, F. Kramer, D. Koth, H. Kosmehl, T. Wahlers, and S. Salehi-Gelani, Cellulose 16, 877 (2009).

    Article  Google Scholar 

  106. D. Klemm, D. Schumann, U. Udhardt, and S. Marsch, Prog. Polym. Sci. 26, 1561 (2001).

    Article  Google Scholar 

  107. ISO/TR 19716, Characterization of cellulose nanocrystals (ISO/TR 19716 Nanotechnologies, Draft Report), https://www.iso.org/obp/ui/#iso:std:iso:tr:19716:ed-1:v1:en. Accessed 15 June 2016.

  108. CSA, Z5100-14 - Cellulosic nanomaterials - Test methods for characterization (Canadian Standards Association, 2014), http://www.ccohs.ca/products/csa/27036672014. Accessed 15 June 2016.

  109. C. Davis, R. Moon, S. Ireland, L. Johnston, J. Shatkin, K. Nelson, E. Foster, A. Forster, M. Postek, and A. Vladar, NIST-TAPPI Workshop on Measurement Needs for Cellulose Nanomaterials (Special Publication 1192, NIST, 2015), http://dx.doi.org/10.6028/nist.sp.1192. Accessed 15 June 2016.

Download references

ACKNOWLEDGEMENTS

This work was funded by the U.S. Forest Service-forest products laboratory (FPL). The authors thank Mike Bilodeau and Jonathan Spender of the Process Development Center at UMaine for providing the scanning electron micrographs of CMFs and CMF-coated papers used in Figs. 2b and 3, respectively. We also gratefully acknowledge Dr. Umesh Agarwal, Dr. Chris Hunt, and Dr. Theodore Wegner of FPL for critical reading of this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, R.J., Schueneman, G.T. & Simonsen, J. Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM 68, 2383–2394 (2016). https://doi.org/10.1007/s11837-016-2018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2018-7

Keywords

Navigation