Skip to main content
Log in

Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C–S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Rauch and F.H. Glorieux, Lancet 363, 1377 (2004).

    Article  Google Scholar 

  2. B. Sykes, D. Ogilvie, P. Wordsworth, G. Wallis, C. Mathew, P. Beighton, A. Nicholls, F.M. Pope, E. Thompson, P. Tsipouras, R. Schwartz, O. Jensson, A. Arnason, A.L. Borresen, A. Heiberg, D. Frey, and B. Steinmann, Am. J. Hum. Genet. 46, 293 (1990).

    Google Scholar 

  3. F.S.V. Dijk, J.M. Cobben, K.A.A. Maugeri, P.G.J. Nikkels, R.R.V. Rijn, and G. Pals, Mol. Syndromol. 2, 1 (2011).

    Google Scholar 

  4. N. Fedarko, U. Vetter, and P. Robey, Connect. Tissue Res. 31, 269 (1995).

    Article  Google Scholar 

  5. S.L. Teitelbaum, W.J. Kraft, R. Lang, and L.V. Avioli, Calc. Tissue Res. 17, 75 (1974).

    Article  Google Scholar 

  6. T.J. Sims, C.A. Miles, A.J. Bailey, and N.P. Camacho, Connect. Tissue Res. 44, 202 (2003).

    Article  Google Scholar 

  7. J.P. Cassella, P. Barber, A.C. Catterall, and S.Y. Ali, Bone 15, 329 (1994).

    Article  Google Scholar 

  8. P. Sarathchandra, F.M. Pope, and S.Y. Ali, Calcif. Tissue Int. 65, 390 (1999).

    Article  Google Scholar 

  9. N.S. Fedarko, P.G. Robey, and U.K. Vetter, J. Bone Miner. Res. 10, 1122 (1995).

    Article  Google Scholar 

  10. N.S. Fedarko, P.D. Sponseller, and J.R. Shapiro, J. Bone Miner. Res. 11, 800 (1996).

    Article  Google Scholar 

  11. W.J. Grzesik, C.R. Frazier, J.R. Shapiro, P.D. Sponseller, P.G. Robey, and N.S. Fedarko, J. Biol. Chem. 277, 43638 (2002).

    Article  Google Scholar 

  12. N.P. Camacho, W.J. Landis, and A.L. Boskey, Connect. Tissue Res. 35, 259 (1996).

    Article  Google Scholar 

  13. N.P. Camacho, L. Hou, T.R. Toledano, W.A. Ilg, C.F. Brayton, C.L. Raggio, L. Root, and A.L. Boskey, J. Bone Miner. Res. 14, 264 (1999).

    Article  Google Scholar 

  14. R.M. Coleman, L. Aguilera, L. Quinones, L. Lukashoya, C. Poirier, and A. Boskey, Bone 51, 920 (2012).

    Article  Google Scholar 

  15. J.P. Cassella, P.J. Barrie, N. Garrington, and S.Y. Ali, J. Bone Miner. Metab. 18, 291 (2000).

    Article  Google Scholar 

  16. R. Baron, J.M. Gertner, R. Lang, and A. Vignery, Pediatr. Res. 17, 204 (1983).

    Article  Google Scholar 

  17. F. Rauch, R. Travers, A.M. Parfitt, and F.H. Glorieux, Bone 26, 581 (2000).

    Article  Google Scholar 

  18. I. Kalajzic, J. Terzic, Z. Rumboldt, K. Mack, A. Naprta, F. Ledgard, G. Gronowicz, S.H. Clark, and D.W. Rowe, Endocrinology 143, 1594 (2002).

    Article  Google Scholar 

  19. E.F. McCarthy, K. Earnest, K. Rossiter, and J. Shapiro, Clin. Orthop. Relat. R. 336, 254 (1997).

    Article  Google Scholar 

  20. A.M. Lund, M. Hansen, G. Kollerup, A. Juul, B. Teisner, and F. Skovby, Acta Paediatr. 87, 1131 (1998).

    Article  Google Scholar 

  21. J.P. Cassella, T.C.B. Stamp, and S.Y. Ali, Calcif. Tissue Int. 58, 155 (1996).

    Article  Google Scholar 

  22. P. Sarathchandra, F.M. Pope, M.V. Kayser, and S.Y. Ali, J. Pathol. 192, 385 (2000).

    Article  Google Scholar 

  23. P. Roschger, N. Fratzl-Zelman, B.M. Misof, F.H. Glorieux, K. Klaushofer, and F. Rauch, Calcif. Tissue Int. 82, 263 (2008).

    Article  Google Scholar 

  24. F. Rauch, L. Lalic, P. Roughley, and F.H. Glorieux, J. Bone Miner. Res. 25, 1367 (2010).

    Google Scholar 

  25. C. Gu, D.R. Katti, and K.S. Katti, Bioinspired Biomim. Nanobiomater. 4, 15 (2015).

    Article  Google Scholar 

  26. K.S. Katti, C. Gu, and D.R. Katti, Biomech. Model Mechan. (2015). doi:10.1007/s10237-015-0727-4.

    Google Scholar 

  27. N. Wasserman, J. Yerramshetty, and O. Akkus, Eur. J. Morphol. 42, 43 (2005).

    Article  Google Scholar 

  28. A. Carriero, E.A. Zimmermann, A. Paluszny, S.Y. Tang, H. Bale, B. Busse, T. Alliston, G. Kazakia, R.O. Ritchie, and S.J. Shefelbine, J. Bone Miner. Res. 29, 1392 (2014).

    Article  Google Scholar 

  29. K. Lindahl, A.M. Barnes, N. Fratzl-Zelman, M.P. Whyte, T.E. Hefferan, E. Makareeva, M. Brusel, M.J. Yaszemski, C.-J. Rubin, A. Kindmark, P. Roschger, K. Klaushofer, W.H. McAlister, S. Mumm, S. Leikin, E. Kessler, A.L. Boskey, O. Ljunggren, and J.C. Marini, Hum. Mutat. 32, 598 (2011).

    Article  Google Scholar 

  30. R. Bogan, R.C. Riddle, Z. Li, S. Kumar, A. Nandal, M.-C. Faugere, A. Boskey, S.E. Crawford, and T.L. Clemens, J. Bone Miner. Res. 28, 1531 (2013).

    Article  Google Scholar 

  31. N.P. Camacho, P. Carroll, and C.L. Raggio, Calcif. Tissue Int. 72, 604 (2003).

    Article  Google Scholar 

  32. L. Spevak, C.R. Flach, T. Hunter, R. Mendelsohn, and A. Boskey, Calcif. Tissue Int. 92, 418 (2013).

    Article  Google Scholar 

  33. A.L. Boskey, K. Verdelis, L. Spevak, L. Lukashova, E. Beniash, X. Yang, W.A. Cabral, and J.C. Marini, BioMed Res. Int. 2013, 295812 (2013).

    Article  Google Scholar 

  34. C. Gu, D.R. Katti, and K.S. Katti, Spectrochimica Acta A Mol. Biomol Spectrosc. 103, 25 (2013).

    Article  Google Scholar 

  35. U. Vetter, E.D. Eanes, J.B. Kopp, J.D. Termine, and P.G. Robey, Calcif. Tissue Int. 49, 248 (1991).

    Article  Google Scholar 

  36. W. Traub, T. Arad, U. Vetter, and S. Weiner, Matrix Biol. 14, 337 (1994).

    Article  Google Scholar 

  37. A. Boskey and R. Mendelsohn, J. Biomed. Opt. 10, 031102 (2005).

    Article  Google Scholar 

  38. J. Reyes-Gasga, R. Garcia-Garcia, M.J. Arellano-Jimenez, E. Sanchez-Pastenes, G.E. Tiznado-Orozco, I.M. Gil-Chavarria, and G. Gomez-Gasga, J. Phys. D-Appl. Phys. 41, 225407 (2008).

    Article  Google Scholar 

  39. N. Kourkoumelis and M. Tzaphlidou, Thescientificworldjo. 10, 402 (2010).

    Article  Google Scholar 

  40. W.H. Moore and S. Krimm, Biopolymers 15, 2439 (1976).

    Article  Google Scholar 

  41. S. Garip and F. Severcan, J. Pharm. Biomed. 52, 580 (2010).

    Article  Google Scholar 

  42. Z.H. Cheng, A. Yasukawa, K. Kandori, and T. Ishikawa, Langmuir 14, 6681 (1998).

    Article  Google Scholar 

  43. E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, and N. Roveri, J. Inorg. Biochem. 72, 29 (1998).

    Article  Google Scholar 

  44. R. Kumar, K.H. Prakash, P. Cheang, L. Gower, K.A. Khor, and J.R. Soc, Interface 5, 427 (2008).

    Google Scholar 

  45. K. Singh, K.S. Lee, D. Lee, Y.K. Kim, and K.C. Kim, J. Mech. Sci. Technol. 24, 1661 (2010).

    Article  Google Scholar 

  46. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. (Chichester: Wiley, 2004).

    Google Scholar 

  47. D. Farlay, G. Panczer, C. Rey, P.D. Delmas, and G. Boivin, J. Bone Miner. Metab. 28, 433 (2010).

    Article  Google Scholar 

  48. E.P. Paschalis, E. DiCarlo, F. Betts, P. Sherman, R. Mendelsohn, and A.L. Boskey, Calcif. Tissue Int. 59, 480 (1996).

    Article  Google Scholar 

  49. D. Magne, P. Weiss, J.M. Bouler, O. Laboux, and G. Daculsi, J. Bone Miner. Res. 16, 750 (2001).

    Article  Google Scholar 

  50. C. Rey, M. Shimizu, B. Collins, and M.J. Glimcher, Calcif. Tissue Int. 49, 383 (1991).

    Article  Google Scholar 

  51. E.P. Paschalis, F. Betts, E. DiCarlo, R. Mendelsohn, and A.L. Boskey, Calcif. Tissue Int. 61, 480 (1997).

    Article  Google Scholar 

  52. C. Rey, A. Hina, A. Tofighi, and M.J. Glimcher, Cell Mater. 5, 345 (1995).

    Google Scholar 

  53. B. Wopenka and J.D. Pasteris, Mat. Sci. Eng. C-Biomim. 25, 131 (2005).

    Article  Google Scholar 

  54. R.A. Harper, A.S. Posner, and P. Soc, Exp. Biol. Med. 122, 137 (1966).

    Article  Google Scholar 

  55. R.G. Handschin and W.B. Stern, Bone 16, S355 (1995).

    Article  Google Scholar 

  56. U. Vetter, L.W. Fisher, K.P. Mintz, J.B. Kopp, N. Tuross, J.D. Termine, and P.G. Robey, J. Bone Miner. Res. 6, 501 (1991).

    Article  Google Scholar 

  57. S. Cazalbou, C. Combes, D. Eichert, and C. Rey, J. Mater. Chem. 14, 2148 (2004).

    Article  Google Scholar 

  58. Y.T. Wu, J.L. Ackerman, H.M. Kim, C. Rey, A. Barroug, and M.J. Glimcher, J. Bone Miner. Res. 17, 472 (2002).

    Article  Google Scholar 

  59. C. Rey, V. Renugopalakrishnan, B. Collins, and M.J. Glimcher, Calcif. Tissue Int. 49, 251 (1991).

    Article  Google Scholar 

  60. A. George and A. Veis, Chem. Rev. 108, 4670 (2008).

    Article  Google Scholar 

  61. N.S. Fedarko, M. Moerike, R. Brenner, P.G. Robey, and U. Vetter, J. Bone Miner. Res. 7, 921 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

Instrumentation obtained from National Science Foundation MRI grants is acknowledged for enabling experiments conducted in this work. The authors would like to acknowledge the assistance in electron microscopy laboratory from Mr. Scott Payne. Author CG would like to acknowledge the support from Doctoral Dissertation Award of NDSU graduate school.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana S. Katti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Katti, D.R. & Katti, K.S. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta. JOM 68, 1116–1127 (2016). https://doi.org/10.1007/s11837-016-1838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1838-9

Keywords

Navigation