Skip to main content
Log in

Effects of Temperature on Serrated Flows of Al0.5CoCrCuFeNi High-Entropy Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673 K to 873 K at a low strain rate of 5 × 10−5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered-cubic (fcc) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed fcc and body-centered cubic (bcc) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron x-ray diffraction. By comparing the stress–strain curves at different temperatures, two opposite directions of serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  3. J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, Mater. Chem. Phys. 103, 41 (2007).

    Article  Google Scholar 

  4. M. Gao and D. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  5. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).

    Article  Google Scholar 

  6. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Nat. Commun. 6, 5964 (2015).

    Article  Google Scholar 

  7. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  8. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch, Mater. Res. Lett. 3, 95 (2014).

    Article  Google Scholar 

  9. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, JOM 66, 1984 (2014).

    Article  Google Scholar 

  10. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  11. Z.N. An, H.L. Jia, Y.Y. Wu, P.D. Rack, A.D. Patchen, Y.Z. Liu, Y. Ren, N. Li, and P.K. Liaw, Mater. Res. Lett. 1 (2015).

  12. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, and H.C. Shih, J. Electrochem. Soc. 154, C424 (2007).

    Article  Google Scholar 

  13. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  14. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2012).

    Article  Google Scholar 

  15. C.-J. Tong, M.-R. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, S.-J. Lin, and S.-Y. Chang, Metall. Mater. Trans. A 36A, 1263 (2005).

    Article  Google Scholar 

  16. J. Antonaglia, X. Xie, Z. Tang, C.W. Tsai, J.W. Qiao, Y. Zhang, M.O. Laktionova, E.D. Tabachnikova, J.W. Yeh, O.N. Senkov, M.C. Gao, J.T. Uhl, P.K. Liaw, and K.A. Dahmen, JOM 66, 2002 (2014).

    Article  Google Scholar 

  17. T. Takasugi, H. Honjo, Y. Kaneno, and H. Inoue, Acta Mater. 50, 847–855 (2002).

    Article  Google Scholar 

  18. X.J. Yu and K.S. Kumar, Int. J. Refract. Met. Hard Mater. 41, 329 (2013).

    Article  Google Scholar 

  19. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, and K.A. Dahmen, Sci. Rep. 4, 4382 (2014).

    Article  Google Scholar 

  20. J.W. Qiao, F.Q. Yang, G.Y. Wang, P.K. Liaw, and Y. Zhang, Scripta Mater. 63, 1081 (2010).

    Article  Google Scholar 

  21. J.W. Qiao, Y. Zhang, and P.K. Liaw, Intermetallics 18, 2057 (2010).

    Article  Google Scholar 

  22. J.W. Qiao, H.L. Jia, Y. Zhang, P.K. Liaw, and L.F. Li, Mater. Chem. Phys. 136, 75 (2012).

    Article  Google Scholar 

  23. Y. Cao, X. Xie, J. Antonaglia, B. Winiarski, G. Wang, Y.C. Shin, P.J. Withers, K.A. Dahmen, and P.K. Liaw, Sci. Rep. 5, 10789 (2015).

    Article  Google Scholar 

  24. H.L. Jia, L.L. Zheng, W.D. Li, N. Li, J.W. Qiao, G.Y. Wang, Y. Ren, P.K. Liaw, and Y. Gao, Metall. Mater. Trans. A 46, 2431 (2015).

    Article  Google Scholar 

  25. T. Burgess, K.J. Laws, and M. Ferry, Acta Mater. 56, 4829 (2008).

    Article  Google Scholar 

  26. I.S. Kim and M.C. Chaturvedi, Mater. Sci. Eng. 37, 165 (1979).

    Article  Google Scholar 

  27. S.A. Nalawade, M. Sundararaman, R. Kishore, and J.G. Shah, Scripta Mater. 59, 991 (2008).

    Article  Google Scholar 

  28. L.J. Meng, J. Sun, H. Xing, and G.W. Pang, J. Nucl. Mater. 394, 34 (2009).

    Article  Google Scholar 

  29. S.Y. Chen, X. Yang, K. Dahmen, P.K. Liaw, and Y. Zhang, Entropy 16, 870 (2014).

    Article  Google Scholar 

  30. M.C. Cai, L.S. Niu, T. Yu, H.J. Shi, and X.F. Ma, Mater. Sci. Eng. A 527, 5175 (2010).

    Article  Google Scholar 

  31. V. Shankar, M. Valsan, K. Bhanu Sankara Rao, and S.L. Mannan, Metall. Mater. Trans. A 35A, 3129 (2004).

    Article  Google Scholar 

  32. D. Thevenet, M. Mliha-Touati, and A. Zeghloul, Mater. Sci. Eng. A A266, 175 (1999).

    Article  Google Scholar 

  33. P.G. McCormick, Philos. Mag. 23, 949 (1971).

    Article  Google Scholar 

  34. C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lin, and S.-Y. Chang, Metall. Mater. Trans. A 236A, 881 (2005).

    Article  Google Scholar 

  35. C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun, and S.-K. Chen, J. Alloys Compd. 486, 427 (2009).

    Article  Google Scholar 

  36. K. Prasad and V.K. Varma, Mater. Sci. Eng. A 486, 158 (2008).

    Article  Google Scholar 

  37. S. Fu, T. Cheng, Q. Zhang, Q. Hu, and P. Cao, Acta Mater. 60, 6650 (2012).

    Article  Google Scholar 

  38. K. Zhang and Z. Fu, Intermetallics 28, 34 (2012).

    Article  Google Scholar 

  39. A.V.D. Beukel and U.F. Kocks, Acta Metall. 30, 1027 (1982).

    Article  Google Scholar 

  40. L.P. Kubin and Y. Estrin, Phys. Stat. Sol. 172, 173 (1992).

    Article  Google Scholar 

  41. P.G. McCormick, Acta Metall. 20, 351 (1972).

    Article  MathSciNet  Google Scholar 

  42. P. Rodriguez, Bull. Mater. Sci. 6, 653 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

The National Science Foundation (DMR-0909037, CMMI-0900291 and CMMI-1100080), the Department of Energy Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP, Grant 00119262), and the DOE Office of Fossil Energy, NETL (DE-FE0008855, DE-FE-0024054, and DE-FE-0011194), with Drs. C.V. Cooper, A. Ardell, Z.M. Taleff, R.O. Jenseng Jr., L. Tian, V. Cedro, R. Dumt, S. Lesica, S. Markovich, and J. Mullen as program managers, provided additional funding, particularly for K.A.D. at University of Illinois at Urbana Champaign and S.C., X.X., and P.K.L. at The University of Tennessee. X.X. and P.K.L. very much appreciates the support from the U.S. Army Office Project (W911NF-13-1-0438) with the program managers, Drs. S.N. Mathaudhu and D.M. Stepp. J.W.Q. would like to acknowledge the financial support of the Youth Natural Science Foundation of Shanxi Province, China (No. 2015021005). The current research used resources of the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated for the DOE Office of Science by the Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Y.Z. appreciates the financial support of the National High Technology Research and Development Program of China (No. 2009AA03Z113) and the National Science Foundation of China (Nos. 51471025 and 51210105006), 111 Project (B07003), and the Program for Changjiang Scholars and the Innovative Research Team of the University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Liaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xie, X., Chen, B. et al. Effects of Temperature on Serrated Flows of Al0.5CoCrCuFeNi High-Entropy Alloy. JOM 67, 2314–2320 (2015). https://doi.org/10.1007/s11837-015-1580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1580-8

Keywords

Navigation