Skip to main content
Log in

Large Eddy Simulation of Bubbly Flow and Slag Layer Behavior in Ladle with Discrete Phase Model (DPM)–Volume of Fluid (VOF) Coupled Model

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the ladle metallurgy process, the bubble movement and slag layer behavior is very important to the refining process and steel quality. For the bubble–liquid flow, bubble movement plays a significant role in the phase structure and causes the unsteady complex turbulent flow pattern. This is one of the most crucial shortcomings of the current two-fluid models. In the current work, a one-third scale water model is established to investigate the bubble movement and the slag open-eye formation. A new mathematical model using the large eddy simulation (LES) is developed for the bubble–liquid-slag-air four-phase flow in the ladle. The Eulerian volume of fluid (VOF) model is used for tracking the liquid-slag-air free surfaces and the Lagrangian discrete phase model (DPM) is used for describing the bubble movement. The turbulent liquid flow is induced by bubble–liquid interactions and is solved by LES. The procedure of bubble coming out of the liquid and getting into the air is modeled using a user-defined function. The results show that the present LES–DPM–VOF coupled model is good at predicting the unsteady bubble movement, slag eye formation, interface fluctuation, and slag entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C D :

Drag force coefficient

C VM :

Virtual mass force coefficient

C S :

Smagorinsky constant

d :

Distance to the closest wall

d p :

Bubble diameter

F D :

Momentum exchange coefficient

\( \vec{F}_{\text{VM}} \) :

Virtual mass force

\( \vec{F}_{\text{PG}} \) :

Pressure gradient force

\( \vec{g} \) :

Gravitational acceleration

L s :

Mixing length for subgrid scales

n :

Number of bubbles

P :

Pressure

Q :

Gas flow rate

Re :

Relative Reynolds number

S :

Rate-of-strain tensor

t :

Time

\( \vec{u} \) :

Velocity

V :

Cell volume

α :

Volume fraction

ρ :

Density

τ :

Subgrid-scale stress

μ :

Viscosity

μ t :

Turbulent viscosity

κ :

Von Kármán constant

\( \delta_{\text{ij}} \) :

Dirac function

References

  1. J.W. Han, S.H. Heo, D.H. Kam, B.D. You, J.J. Pak, and H.S. Song, ISIJ Int. 41, 1165 (2001).

    Article  Google Scholar 

  2. K. Yonezawa and K. Schwerdtfeger, Metall. Mater. Trans. B 30B, 411 (1999).

    Article  MATH  Google Scholar 

  3. V. Sahajwalla, A.H. Castillejos, and J.K. Brimacombe, Metall. Mater. Trans. B 21B, 71 (1990).

    Article  Google Scholar 

  4. D. Mazumdar and J.W. Evans, Metall. Mater. Trans. B 35B, 400 (2004).

    Article  Google Scholar 

  5. K. Krishnapisharody and G.A. Irons, ISIJ Int. 48, 1807 (2008).

    Article  Google Scholar 

  6. B.K. Li, H.B. Yin, C.Q. Zhou, and F. Tsukihashi, ISIJ Int. 48, 1704 (2008).

    Article  Google Scholar 

  7. C.A. Llanos, S. Garcia, J.A. Ramos-Banderas, J.D.J. Barreto, and G. Solorio, ISIJ Int. 50, 396 (2010).

    Article  Google Scholar 

  8. D. Guo and G.A. Irons, Metall. Mater. Trans. B 31B, 1457 (2000).

    Article  Google Scholar 

  9. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw, Prog. Comput. Fluid Dynam. 9, 345 (2009).

    Article  Google Scholar 

  10. H. Liu, Z. Qi, and M. Xu, Steel Res. Int. 82, 440 (2011).

    Article  MATH  Google Scholar 

  11. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi, ISIJ Int. 53, 484 (2013).

    Article  Google Scholar 

  12. Z.Q. Liu, L.M. Li, B.K. Li, and M.F. Jiang, JOM 66, 1184 (2014).

    Article  Google Scholar 

  13. F. Wang, B.K. Li, and F. Tsukihashi, ISIJ Int. 47, 568 (2007).

    Article  Google Scholar 

  14. A.B. Liu, D. Mather, and R.D. Reitz, Modeling the Effects of Drop Drag and Breakup on Fuel Sprays, SAE Technical Paper 930072 (Warrendale, PA: SAE, 1993).

  15. J. Smagorinsky, Month. Wea. Rev. 91, 99 (1963).

    Article  Google Scholar 

  16. M. Germano, U. Piomelli, P. Moin, and W.H. Cabot, Phys. Fluids A 3, 1760 (1991).

    Article  Google Scholar 

  17. D.K. Lilly, Phys. Fluids A 4, 633 (1992).

    Article  Google Scholar 

  18. M.T. Dhotre and B.L. Smith, Chem. Eng. Sci. 62, 6615 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the National Natural Science Foundation of China for support of this research (Grant No. 51210007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, Z., Cao, M. et al. Large Eddy Simulation of Bubbly Flow and Slag Layer Behavior in Ladle with Discrete Phase Model (DPM)–Volume of Fluid (VOF) Coupled Model. JOM 67, 1459–1467 (2015). https://doi.org/10.1007/s11837-015-1465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1465-x

Keywords

Navigation