Skip to main content
Log in

Modeling Damage Growth in Oxidized High-Temperature Polymeric Composites

  • Published:
JOM Aims and scope Submit manuscript

Thermal oxidation is a major degradation mechanism for polymers and composites operating at high temperatures. Controlling the damage progression in oxidative environments is critical for enhancing the long-term durability of these materials. The surface oxidation of the material and the damage evolution in high-temperature polymer matrix composite materials (HTPMCs) are highly coupled mechanisms. In this article, three-dimensional, finite-element methods are used to simulate both oxidation layer and damage growth in polymers subjected to bending loads and laminated composites subjected to uniaxial tension. An oxygen diffusion–reaction model determines the changes in properties due to oxidation and chemical strains induced by oxidation. The damage growth is simulated using mesh-free extended finite-element techniques and suitable damage initiation laws. The damage evolution observed with simulations is seen to be consistent with experimental observations reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.A. Schoeppner, G.P. Tandon, and K.V. Pochiraju, Multi-Scale Modeling and Simulation of Composite Materials and Structures, ed. Y. Kwon, D.H. Allen, and R. Talreja (New York: Springer, 2007), p. 373.

    Google Scholar 

  2. K.V. Pochiraju and G.P. Tandon, Compos. A 40, 1931 (2009).

    Article  Google Scholar 

  3. L. Martha, P.A. Waarzynek, and A.R. Ingraffea, Eng. Comput. 9, 63 (1993).

    Article  Google Scholar 

  4. B.J. Carter, C.S. Chen, A.R. Ingraffea, and P.A. Wawrzynek, ICF9 (Sydney, Australia: Elsevier, 1997), p. 1923.

    Google Scholar 

  5. P.O. Bouchard, F. Bay, Y. Chastel, and I. Tovena, Comput. Methods Appl. Mech. Eng. 189, 723 (2000).

    Article  MATH  Google Scholar 

  6. P.O. Bouchard, F. Bay, and Y. Chastel, Comput. Methods Appl. Mech. Eng. 192, 3887 (2002).

    Article  Google Scholar 

  7. B. Patzak and M. Jirasek, J. Eng. Mech. 130, 720 (2004).

    Article  Google Scholar 

  8. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Comput. Methods Appl. Mech. Eng. 139, 3 (1996).

    Article  MATH  Google Scholar 

  9. E.N. Dvorkin, A.M. Cuitino, and G. Gioia, Comput. Methods Appl. Mech. Eng. 90, 829 (1990).

    Article  Google Scholar 

  10. M. Klisinski, K. Runesson, and S. Sture, J. Eng. Mech.-ASCE 117, 575 (1991).

    Article  Google Scholar 

  11. J.C. Simo and J. Oliver, Fracture and Damage in Quasibrittle Structures, ed. Z.P. Bazant, Z. Bittnar, M. Jirasek, and J. Mazars (London, UK: E & FN Spon, 1994), p. 25.

    Google Scholar 

  12. T. Olofsson, M. Klisinski, and P. Neda, Computational Modeling of Concrete Structures, ed. H. Mang, N. Bicanic, and R. de Borst (Swansea, U.K.: Pineridge, 1998), p. 373.

    Google Scholar 

  13. J. Oliver, Int. J. Numer. Meth. Eng. 39, 3575 (1996).

    Article  MATH  Google Scholar 

  14. J.M. Melenk and I. Babuska, Comput. Methods Appl. Mech. Eng. 139, 289 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Moes, J. Dolbow, and T. Belytschko, Int. J. Numer. Meth. Eng. 46, 131 (1999).

    Article  MATH  Google Scholar 

  16. T. Belytschko and T. Black, Int. J. Numer. Meth. Eng. 45, 601 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Milan and T. Zimmermann, Int. J. Numer. Meth. Eng. 50, 1269 (2001).

    Article  MATH  Google Scholar 

  18. J. Milan and T. Zimmermann, Int. J. Numer. Meth. Eng. 50, 1291 (2001).

    Article  Google Scholar 

  19. E. Budyn, G. Zi, N. Moes, and T. Belytschko, Int. J. Numer. Meth. Eng. 61, 1741 (2004).

    Article  MATH  Google Scholar 

  20. G.P. Tandon, K.V. Pochiraju, and G.A. Schoeppner, Polym. Degrad. Stabil. 91, 1861 (2006).

    Article  Google Scholar 

  21. K.V. Pochiraju and G.P. Tandon, J. Eng. Mater.-T. ASME 128, 107 (2006).

    Article  Google Scholar 

  22. K.V. Pochiraju, G.P. Tandon, and G. Schoeppner, Mech. Time-Depend. Mater. 12, 45 (2008).

    Article  Google Scholar 

  23. G.P. Tandon and K.V. Pochiraju, J. Compos. Mater. 45, 415 (2001).

    Article  Google Scholar 

  24. N.S. Bakhvalov and G. Panasenko, Mathematical Problems in Mechanics of Composite Materials (New York: Springer, 1989).

    MATH  Google Scholar 

  25. Z. Hashin and A. Rotem, J. Compos. Mater. 7, 448 (1973).

    Article  Google Scholar 

  26. Z. Hashin, J. Appl. Mech. 47, 329 (1980).

    Article  Google Scholar 

  27. G.P. Tandon, Long-Term Durability of Polymeric Matrix Composites, ed. K.V. Pochiraju, G.P. Tandon, and G.A. Schoeppner (New York: Springer, 2012), p. 345.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Pochiraju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, N., Pochiraju, K. Modeling Damage Growth in Oxidized High-Temperature Polymeric Composites. JOM 65, 246–255 (2013). https://doi.org/10.1007/s11837-012-0514-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0514-y

Keywords

Navigation