Skip to main content

Advertisement

Log in

Critical material and process issues for CO2 separation from coal-powered plants

  • Materials in Clean Power Systems
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Concentrating CO2 from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO2 emissions by capture and sequestration. This paper provides a short review of CO2 capture incentives, current separation processes, and research progress of various new technologies. Scientifically, CO2 can be separated from a gas mixture by all the methods reviewed in this work: distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in practical feasibility and ultimately the cost. Important material issues and their impacts to the process viability will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Future of Coal-An Interdisciplinary MIT Study (Cambridge, MA: MIT, 2007), http://web.mit.edu/coal/ .

  2. B. Benson, “Geological Storage Capacity in the United States” (Presentation at the Gasification Technology Conference, San Francisco, CA, 16 October 2007).

  3. S.M. Klara and R.D. Srivastava, “US DOE Integrated Collaborative Technology Development Program for CO2 Separation and Capture,” Environmental Progress, 21 (2002), pp. 247–353.

    Article  CAS  Google Scholar 

  4. J.P. Ciferno, “CO2 Capture: Comparison of Cost and Performance of Gasification and Combustion-based Plants” (Presentation at the Workshop on Gasification Technologies, Denver, Colorado, 14 March 2007).

  5. D. Aaron and C. Tsouris, “Separation of CO2 from Flue Gas: A Review,” Separation Science And Technology, 40(1–3) (2005), pp. 321–348.

    Article  CAS  Google Scholar 

  6. E.J. Granite and T. O’Brien, “Review of Novel Methods for Carbon Dioxide Separation from Flue and Fuel Gases,” Fuel Processing Technology, 86(14–15) (2005), pp. 1423–1434.

    Article  CAS  Google Scholar 

  7. C.S. Song, “Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing,” Catalysis Today, 115(1–4) (2006), pp. 2–32.

    Article  CAS  Google Scholar 

  8. J.D. Figueroa and S.I. Plasynski, “U.S. Department of Energy Carbon Sequestration Program” (Presentation at the American Filtration & Separation Society Topic Conference, Pittsburgh, PA, 17 October 2006).

  9. X.C. Xu et al., “Adsorption Separation of Carbon Dioxide from Flue Gas of Natural Gas-Fired Boiler by a Novel Nanoporous ‘Molecular Basket’ Adsorbent,” Fuel Processing Technology, 86(14–15) (2005), pp. 1457–1472.

    Article  CAS  Google Scholar 

  10. P.J.E. Harlick and A. Sayari, “Applications of Pore-Expanded Mesoporus Silica.5.Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance,” Ind. Eng. Chem. Res., 46 (2007), pp. 446–458.

    Article  CAS  Google Scholar 

  11. X. Liu et al. “Adsorption and Regeneration Study of the Mesoporous Adsorbent SBA-15 Adapted to the Capture/Separation of CO2 and CH4,” Chem. Eng. Sci., 62 (2007), pp. 1101–1110.

    Article  CAS  Google Scholar 

  12. M.G. Plaza et al., “CO2 Capture by Adsorption with Nitrogen Enriched Carbons,” FUEL, 86(14) (2007), pp. 2204–2212.

    Article  CAS  Google Scholar 

  13. A. Arenillas et al., “CO2 Capture using Some Fly Ash-Derived Carbon Materials,” FUEL, 84(17) (2005), pp. 2204–2210.

    Article  CAS  Google Scholar 

  14. V.G. Gomes, and K.W.K. Yee, “Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases,” Separation and Purification Technology, 28(2) (2002), pp. 161–171.

    Article  CAS  Google Scholar 

  15. J. Merel, M. Clausse, and F. Menunier, “Carbon Dioxide Capture by Indirect Thermal Swing Adsorption using 13X Zeolite,” Environmental Progress, 25 (2006), pp. 327–332.

    Article  CAS  Google Scholar 

  16. Z. Zhao et al., “Adsorption of Carbon Dioxide on Alkali-Modified Zeolite 13X Adsorbents,” International Journal of Greenhouse Gas Control, 1 (2007), pp. 355–359.

    Article  CAS  Google Scholar 

  17. D. Ko, R. Siriwardane, and L.T. Biegler, “Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture,” Industrial & Engineering Chemistry Research, 44(21) (2005), pp. 8084–8094.

    Article  CAS  Google Scholar 

  18. P.J.E. Harlick and F.H. Tezel, “Equilibrium Analysis of Cyclic Adsorption Processes: CO2 Working Capacities with NaY,” Separation Science And Technology, 40(13) (2005), pp. 2569–2591.

    Article  CAS  Google Scholar 

  19. Y. Takamura et al., “Evaluation of Dual-Bed Pressure Swing Adsorption for CO2 Recovery from Boiler Exhaust Gas,” Separation And Purification Technology, 24(3) (2001), pp. 519–528.

    Article  CAS  MathSciNet  Google Scholar 

  20. S.K. Wirawan and D. Creaser, “CO2 Adsorption on Silicalite-1 and Cation Exchanged ZSM-5 Zeolites using a Step Change Response Method,” Microporous and Mesoporous Materials, 91 (2006), pp. 196–205.

    Article  CAS  Google Scholar 

  21. M. Katoh et al., “Adsorption Characterization of Ion-Exchanged ZSM-5 Zeolites for CO2/N2 Mixtures,” J. of Colloid and Interface Sci., 226 (2000), pp. 145–150.

    Article  CAS  Google Scholar 

  22. P.Y. Li and F.H. Tezel, “Adsorption Separation of N2, O2, CO2 and CH4 Gases by Beta-Zeolite,” Microporous and Mesoporous Materials, 98(1–3) (2007), pp. 94–101.

    Article  CAS  Google Scholar 

  23. P. Sun et al., “Removal of CO2 by Calcium-based Sorbents in the Presence of SO2,” Energy & Fuels, 21(1) (2007), pp. 163–170.

    Article  CAS  Google Scholar 

  24. B. Feng, H. An, and E. Tan, “Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems,” Energy & Fuels, 21(2) (2007), pp. 426–434.

    Article  CAS  Google Scholar 

  25. G.S. Grasa and J.C. Abanades, “CO2 Capture Capacity of CaO in Long Series of Carbonation/ Calcination Cycles,” Industrial & Engineering Chemistry Research, 45(26) (2006), pp. 8846–8851.

    Article  CAS  Google Scholar 

  26. B.B. Sakadjian et al., “Kinetics and Structural Characterization of Calcium-Based Sorbents Calcined under Subatmospheric Conditions for the High-Temperature CO2 Capture Process,” Industrial & Engineering Chemistry Research, 46(1) (2007), pp. 35–42.

    Article  CAS  Google Scholar 

  27. M.K.R. Reddy et al., “Layered Double Hydroxides for CO2 Capture: Structure Evolution and Regeneration,” Industrial & Engineering Chemistry Research, 45(22) (2006), pp. 7504–7509.

    Article  Google Scholar 

  28. S.P. Reynolds, A.D. Ebner, and J.A. Ritter, “Carbon Dioxide Capture from Flue Gas by Pressure Swing Adsorption at High Temperature using a K-promoted HTlc: Effects of Mass Transfer on the Process Performance,” Environmental Progress, 25(4) (2006), pp. 334–342.

    Article  CAS  Google Scholar 

  29. R.W. Hughes et al., “A Design, Process Simulation and Construction of an Atmospheric Dual Fluidized Bed Combustion System for In Situ CO2 Capture using High-Temperature Sorbents,” Fuel Processing Technology, 86(14–15) (2005), pp. 1523–1531.

    Article  CAS  Google Scholar 

  30. M. Kato, S. Yoshikawa, and K. Nakagawa, “Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide Range of Temperature and Carbon Dioxide Concentrations,” J. of Materials Science Letters, 21 (2002), pp. 485–487.

    Article  CAS  Google Scholar 

  31. Y. Liang et al., “Carbon Dioxide Capture using Dry Sodium-Based Sorbents,” Energy & Fuels, 18(2) (2004), pp. 569–575.

    Article  CAS  Google Scholar 

  32. D. Shekhawat, D.R. Luebke, and H. Pennline, A Review of Carbon Dioxide Selective Membranes, U.S. DOE Topical Report, DOE/METL-2003/1200 (2003).

  33. E. Favre, “Carbon Dioxide Recovery from Post-Combustion Processes: Can Gas Permeation Membranes Compete with Absorption,” J. Membrane Science, 294(1–2) (2007), pp. 50–59.

    Article  ADS  CAS  Google Scholar 

  34. W. Ho, “Membranes, Methods of Making Membranes, and Separating Gases using Membranes” (Geneva, Switzerland: World Intellectual Property Organization, 11 May 2006), WO 2006/050531.

  35. J. Dong, Y.S. Lin, and W. Liu, “Multicomponent Hydrogen/Hydrocarbon Separation by MFI-type Zeolite Membranes,” AIChE J., 46 (2000), pp. 1957–1966.

    Article  CAS  Google Scholar 

  36. V. Sebastian et al., “Zeolite Membrane for CO2 Removal: Operating at High Pressure,” J. Mem. Sci., 292 (2007), pp. 92–97.

    Article  CAS  Google Scholar 

  37. E. Johansson et al., “300 W Laboratory Reactor System for Chemical-Looping Combustion with Particle Circulation,” FUEL, 85(10–11) (2006), pp. 1428–1438.

    Article  CAS  MathSciNet  Google Scholar 

  38. T. Mattisson, A. Lyngfelt, and P. Cho, “The Use of Iron Oxide as an Oxygen Carrier in Chemical-Looping Combustion of Methane with Inherent Separation of CO2,” FUEL, 80(13) (2001), pp. 1953–1962.

    Article  CAS  Google Scholar 

  39. J. Adanez et al., “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, 18(2) (2004), pp. 371–377.

    Article  CAS  Google Scholar 

  40. W. Xiang and Y.Y. Chen, “Hydrogen and Electricity from Coal with Carbon Dioxide Separation using Chemical Looping Reactors,” Energy & Fuels, 21(4) (2007), pp. 2272–2277.

    Article  CAS  Google Scholar 

  41. S. Schenk, “HydroMax: Breakthrough Molten-Metal Coal Gasification Technology” (Presentation at the Gasification Technology Conference, San Francisco, CA, 14–17 October 2007).

  42. K. Sugiura et al., “The Carbon Dioxide Concentrator by using MCFC,” J. Power Sources, 118 (2003), pp. 218–227.

    Article  CAS  Google Scholar 

  43. Y. Tokuda et al., “Development of Hollow Fiber Membrane for CO2 Separation,” Energy Conversion Management, 38(Suppl.) (1997), pp. S111–S116.

    Article  CAS  Google Scholar 

  44. S. Kang and H. Lee, “Recovery of CO2 from Flue Gas using Gas Hydrate: Thermodynamic Verification through Phase Equilibrium Measurements,” Environ. Sci. Technol., 34 (2000), pp. 4397–4400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., King, D., Liu, J. et al. Critical material and process issues for CO2 separation from coal-powered plants. JOM 61, 36–44 (2009). https://doi.org/10.1007/s11837-009-0050-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0050-6

Keywords

Navigation