Skip to main content
Log in

Transition metal nitride functional coatings

  • Overview
  • Functional Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

During the past decade, interest in transition metal nitrides has grown considerably. Nitrides of various elements play an important role in industry, science, and technology for their interesting and useful resilient properties. For example, many transition metal nitrides based on titanium, boron, and nitrogen have stimulated commercial interest because of their extreme hardness, wear and corrosion resistance, and thermal and electrical properties. All of these features are enhanced by the resulting structures and the large degree of covalency exhibited by the transition metal-nitride bonds. Coatings of select nitrides may particularly influence physico-chemical properties in critical surface and interface regions. This article attempts to present a brief overview on transition metal-nitride research for advancement in reliable machine part manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Gissler, Surf. Coat. Technol., 68–69 (1994), p. 563.

    Google Scholar 

  2. L.E. Troth, Transition Metal Carbides and Nitrides (New York: Academic Press, 1971).

    Google Scholar 

  3. F.P. Burdy and R.H. Wentorf, J. Chem. Phys., 38 (1963), p. 1144.

    Article  Google Scholar 

  4. Y.I. Chen and J.G. Duh, Surf. Coat. Technol., 48 (1991), p. 163.

    Article  CAS  Google Scholar 

  5. H. Deng et al., Surf. Coat. Technol., 58 (1995), p. 609.

    Google Scholar 

  6. M.A. Baker et al., J. Vac. Sci. Technol. A, 15 (1997), p. 284.

    Article  CAS  Google Scholar 

  7. C. Hean and T.P. Terrat, Surf. Coat. Technol., 108–109 (1998), p. 332.

    Google Scholar 

  8. C. Rebholz et al., J. Vac. Sci. Technol. A, 16 (1998), p. 2851.

    Article  CAS  Google Scholar 

  9. M.L. Wu et al., J. Tribol., 120 (1998), p. 179.

    CAS  Google Scholar 

  10. J.G. Duh and J.C. Doong, Surf. Coat. Technol., 56 (1993), p. 257.

    Article  CAS  Google Scholar 

  11. V.R. Paramesrawan, J.P. Immangeon, and D. Nagy, Surf. Coat. Technol., 52 (1992), p. 251.

    Article  Google Scholar 

  12. F. Hohl, H.R. Stock, and P. Mayr, Surf. Coat. Technol., 54–55 (1992), p. 160.

    Article  Google Scholar 

  13. J.L. Peytri et al., High Temp. High Press., 10 (1978), p. 341.

    Google Scholar 

  14. H. Novotry et al., Monasth. Chem., 92 (1996), p. 403.

    Google Scholar 

  15. P. Hammer et al., Surf. Coat. Technol., 68–69 (1994), p. 190.

    Google Scholar 

  16. W. Gissler, Surf. Coat. Technol., 68–69 (1994), p. 556.

    Article  Google Scholar 

  17. I. Milosev, H. Strechblow, and B. Narinsek, Thin Solid Flims, 303 (1997), p. 246.

    Article  CAS  Google Scholar 

  18. D. Zhong et al., Surf. Coat. Technol., 130 (2000), p. 33.

    Article  CAS  Google Scholar 

  19. R.D. Noebe, R.R. Bowman, and M.V. Nathal, Int. Mater. Rev., 38 (1993), p. 193.

    CAS  Google Scholar 

  20. E.G. Coigan, Mater. Sci. Rep., 5 (1990), p. 1.

    Article  Google Scholar 

  21. O. Knotek, W. Bosch, and T. Leyendecker, Proc. 7th Int. Conf. Vac. Met. Link (Tokyo, Japan: Keidanren Kaiken, 1985).

    Google Scholar 

  22. W.D. Muntz, J. Vac. Sci. Technol. A, 4 (1986), p. 2717.

    Article  Google Scholar 

  23. H.A. Jehn et al., J. Vac. Sci. Technol. A, 4 (1986), p. 2701.

    Article  CAS  Google Scholar 

  24. W.D. Muntz and CEI Course, Nitride and Carbide Coatings (LSRH-Neudatel, Switzerland: 1985).

    Google Scholar 

  25. D. McIntyre et al., J. Appl. Phys., 67 (1990), p. 1542.

    Article  CAS  Google Scholar 

  26. S. Seal, A. Kale, and S. Sundaram, J. Vac. Sci. and Tech., 18 (4) (2000), p. 1571.

    Article  CAS  Google Scholar 

  27. S. Seal et al., Surf. Coat. Technol, in press.

  28. A. Kale (M.S. thesis, University of Central Florida, 1999).

  29. W. Jeitschko, H. Novotny, and F. Benesovsky, Monatsh. Chem., 94 (1963), p. 1198.

    Article  CAS  Google Scholar 

  30. J.C. Schuster and J. Bauer, J. Solid State Chem., 53 (1984), p. 260.

    Article  CAS  Google Scholar 

  31. R. Kieffer and F. Benesovsky, Encyclopedia of Chemical Technology, 2nd edition, Vol. 4 (New York: Interscience Publishers, 1964).

    Google Scholar 

  32. J.L. Peytavi et al., High Temp. High Press., 10 (1968), p. 293.

    Google Scholar 

  33. H. Karner et al., Surf. Coat. Technol., 39–40 (1989), p. 293.

    Article  Google Scholar 

  34. C. Mitterer et al., J. Vac. Sci. Technol. A, 7 (1989), p. 2645.

    Article  Google Scholar 

  35. O. Knotek et al., Surf. Coat. Technol., 49 (1991), p. 263.

    Article  CAS  Google Scholar 

  36. M. Tamura and H Kubo, Surf. Coat. Technol., 54–55 (1992), p. 255.

    Article  Google Scholar 

  37. C. Mitterer, M. Rauter, and P. Rodhammer, Surf. Coat. Technol., 41 (1990), p. 351.

    Article  CAS  Google Scholar 

  38. O. Knotek et al., Surf. Coat. Technol., 43–44 (1990), p. 107.

    Article  Google Scholar 

  39. B. Matthes, E. Broszeit, and K.H. Kloss, Mat. Wiss. Werkstofftech., 24 (1993), p. 142.

    Article  CAS  Google Scholar 

  40. E. Selbach, K. Schmidt, and M. Wang, Thin Solid Flims, 188 (1990), p. 267.

    Article  CAS  Google Scholar 

  41. W. Gissler et al., Mater. Manufact. Process (in press, 2001).

  42. T. Friesen et al., Surf. Coat. Technol., 48 (1991), p. 169.

    Article  CAS  Google Scholar 

  43. W. Gissler et al., editors, Surface Engineering, Vol. 1, Fundamentals of Coatings (Cambridge, U.K.: Royal Society of Chemistry, 1993), p. 320.

    Google Scholar 

  44. T. Friesen et al., Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, ed. M. Nastasi, D.M. Parkin, and H. Gleiter (Dordrecht, the Netherlands: Kluwer, 1993), p. 475.

    Google Scholar 

  45. P. Hammer et al., Surf. Coat. Technol., 68–69 (1994), p. 194.

    Article  Google Scholar 

  46. G. Dearnaley, Rep. Proj. Phys., 32 (1969), p. 405.

    Article  Google Scholar 

  47. A. AnHila et al., J. Appl. Phys., 57 (1985), p. 1423.

    Article  Google Scholar 

  48. H. Holleck, J. Vac. Sci. Technol. A, 4 (1986), p. 2661.

    Article  CAS  Google Scholar 

  49. B. Narinseh and P. Panjan, Surf. Coat. Technol., 74–75 (1995), p. 919.

    Google Scholar 

  50. S. Ohira and M. Inaki, Nucl. Instr. Methods. B, 9/20 (1987), p. 162.

    Article  Google Scholar 

  51. G. Dearnaley, Nuci. Instr. Methods. B, 24/25 (1987), p. 506.

    Article  Google Scholar 

  52. B. Rauschenbach and K. Heming, Mater. Sci. Eng. A, 151 (1992), p. 9.

    Article  Google Scholar 

  53. Y. Miyagawa et al., Mat. Sci. and Eng. A, 253 (1998), p. 135.

    Article  Google Scholar 

  54. S. Miyagawa et al., Nucl. Instr. Methods. B, 69 (1992), p. 431.

    Article  Google Scholar 

  55. S. Miyagawa et al., Nucl. Instr. Methods. B, 80/81 (1993), p. 480.

    Article  Google Scholar 

  56. S. Miyagawa et al., Surf. Coat. Technol., 66 (1994), p. 245.

    Article  CAS  Google Scholar 

  57. Y. Miyagawa et al., Nucl. Instr. Methods. B, 106 (1995), p. 170.

    Article  CAS  Google Scholar 

  58. Y. Miyagawa et al., Surf. Coat. Technol., 83 (1996), p. 275.

    Article  CAS  Google Scholar 

  59. Y. Miyagawa et al., Nucl. Instr. Methods. B, 121 (1997), p. 340.

    Article  CAS  Google Scholar 

  60. Y. Miyagawa et al., Nucl. Instr. Methods. B, 127/128 (1997), p. 765.

    Article  CAS  Google Scholar 

  61. G.S. Chang et al., Surf. Coat. Technol., 112 (1999), p. 291.

    Article  CAS  Google Scholar 

  62. F. Jahrluig, D.M. Ruck, and H. Fuess, Surf. Coat. Technol., 111 (1999), p. 111.

    Article  Google Scholar 

  63. M. Li, E. Knystautas, and M. Krishnadev, Surf. Coat. Technol., 138 (2001), p. 220.

    Article  CAS  Google Scholar 

  64. F.A. Schmidt, Inter. Mater. Review, 35 (1990), p. 61.

    Google Scholar 

  65. J.M.E. Harper, J.J. Cuomo, and H.R. Kaufman, J. Vac Sci. Technol., 21 (1982), p. 737.

    Article  CAS  Google Scholar 

  66. M. Satou and F. Fugimoto, Japanese J. Appl. Phys., 22 (1983), p. 171.

    Article  CAS  Google Scholar 

  67. W. Ensinger and G.K. Wolf, Nucl. Instr. Methods. B, 59/60 (1991), p. 173.

    Article  Google Scholar 

  68. J.K. Hirvonen, Mater. Sci. Report, 6 (1991), p. 215.

    Article  CAS  Google Scholar 

  69. G.K. Hubler, Mater. Sci. Eng. A, 115 (1989), p. 181.

    Article  Google Scholar 

  70. P. Sioshansi, private communication (1990).

  71. M. Iwaki, Mater. Sci. Eng. A, 115 (1989), p. 369.

    Article  Google Scholar 

  72. W. Ensinger, A. Schroer, and G.K. Wolf, Nucl. Instr. Methods. B, 80/81 (1993), p. 445.

    Article  Google Scholar 

  73. E. Harper and R.J. Gambino, J. Vac. Sci. Technol., 16 (1979), p. 1901.

    Article  CAS  Google Scholar 

  74. H. Hoffman and M.R. Gaertner, J. Vac. Sci. Technol., 17 (1980), p. 425.

    Article  CAS  Google Scholar 

  75. M. Sano et al., Nucl. Instr. Methods B, 148 (1999), p. 37.

    Article  CAS  Google Scholar 

  76. J.R. Conrad et al., J. Appl. Phys., 62 (1987), p. 4591.

    Article  CAS  Google Scholar 

  77. I.G. Brown, J.E. Galvin, and R.A. MacGill, Rev. Sci. Inst., 58 (1987), p. 1589.

    Article  CAS  Google Scholar 

  78. G.A. Collins et al., Surf. Coat. Technol., 84 (1996), p. 537.

    Article  CAS  Google Scholar 

  79. S. Schoser, J. Forget, and K. Kohlhof, Surf. Coat. Technol., 93 (1997), p. 339.

    Article  CAS  Google Scholar 

  80. S.Y. Wang et al., Surf. Coat. Technol., 93 (1997), p. 309.

    Article  CAS  Google Scholar 

  81. L.I. Maissel and R. Glang, handbook of Thin Film Technology (New York: McGraw Hill, 1970).

    Google Scholar 

  82. P. Schwarzkopf and R. Kieffer, Refractory Hard Metals (New York: Macmillan, 1953).

    Google Scholar 

  83. N. Sobezak, Interfacial Science in Ceramic Joining, NATO series, 3, Vol. 58, ed. A. Bellosi, T. Kosmac, and A.P. Tomsia (Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998), p. 27.

    Google Scholar 

  84. S.M. Wolf, A.P. LeviH, and J. Brown, Chem. Eng. Prog., 62 (3) (1966), p. 74.

    CAS  Google Scholar 

  85. N. Sobczak et al., State of the Art in Cast MMC, ed. P. Rohatgi (Warrendale, PA: TMS, 2000), p. 129.

    Google Scholar 

  86. R. Asthana and N. Sobczak, JOM-e, www.tms.org/pubs/journals/JOM/0001/Asthana (1999).

  87. F. Nolfi, editor, Phase Transformation in Irradiation (Russian translation) (Chelyabinsk, USSR: Metallurgiya, 1989).

    Google Scholar 

  88. N. Sobczak et al., Proc. Third Cont. on Surf. Phenon. in Foundry Process (Kolobrzeg: Polish Academy of Science, 1996), p. 193.

    Google Scholar 

  89. E. Benko et al., Proc. Int. Conf. High Temp. Capillarity, ed. N. Eustathopolous and N. Sobczak (Krakow, Poland: Foundry Research Institute, 1997).

    Google Scholar 

  90. G.M. Nicholas, J. Mater. Sci., 25 (1990), p. 2679.

    Article  CAS  Google Scholar 

  91. H. Fujii, H. Nakae, and K. Okada, Acta Metall. Mater., 41 (10) (1993), p. 2963.

    Article  CAS  Google Scholar 

  92. N. Sobezak, S. Seal, and T. Barr, Proc. ICCE-3 (New Orleans: College of Engineering, University of New Orleans, 1996), p. 111.

    Google Scholar 

  93. G.A. Kolesnichenko, Poroshkovaya Metallurgiya, 8 (1992), p. 31.

    Google Scholar 

  94. A.M. Martirosjan, Adgenzja rasplavov I pajka materialov, 26 (1991), p. 17.

    Google Scholar 

  95. G.A. Kolesnichenko, Sverkhtverdye materialy, 4 (1987), p. 17.

    Google Scholar 

  96. N. Sobczak et al., in Ref. 89..

    Google Scholar 

  97. S. Loqueux et al., in Ref. 89..

    Google Scholar 

  98. V.M. Perrerertailo, A.A. Smekhnov, and O.B. Loginova, in Ref. 89..

    Google Scholar 

  99. Y.V. Naidich, Prog. in Surf. Membrane Sci., ed. D.A. Cadenhead and J.F. Danielli (New York: Academic Press, 1981), p. 353.

    Google Scholar 

  100. M.G. Nicolas et al., J. Mater. Sci., 25 (1990), p. 2679.

    Article  Google Scholar 

  101. P. Xiao and B. Derby, Acta Mater. 44 (1) (1996), p. 307.

    Article  CAS  Google Scholar 

  102. N. Froumin et al., Acta Mater. 48 (7) (2000), p. 1435.

    Article  CAS  Google Scholar 

  103. N. Sobczak et al., Proc. First Polish Conf. On MMCs (Krakow, Poland: Foundry Research Institute, 1992).

    Google Scholar 

  104. C.R. Brundle, C. Evans, and S. Wilson, Encyclopedia of Materials Characterization (Stoneham, MA: Butterworth-Heinman, 1992).

    Google Scholar 

  105. S. Seal and T.L. Barr, Handbook of Surfaces and Interfaces of Materials, Vol. 2, Surface and Interfaces Analysis and Properties, ed. H.S. Nalwa (San Diego, CA: Academic Press, 2001).

    Google Scholar 

  106. A. Erdemir and C.C. Cheng, Ultramicroscopy, 29 (1989), p. 266.

    Article  CAS  Google Scholar 

  107. A. Erdemir and C.C. Cheng, J. Vac. Sci. Technol. A, 7 (1989), p. 2486.

    Article  CAS  Google Scholar 

  108. C.C. Cheng, A. Erdemir, and G.R. Fenske, Surf. Coat. Technol., 39/40 (1989), p. 365.

    Article  Google Scholar 

  109. U. Helmersson et al., J. Vac. Sci. Technol. A, 3 (1985), p. 308.

    Google Scholar 

  110. D.S. Rickerby and R.B. Newbery, Proc. IPAT 87 (Brighton, Edinburgh, U.K.: CEP Consultants, 1987), p. 224.

    Google Scholar 

  111. S. Seal et al., J. Vac. Sci. Technol. A, 15 (3) (1997), p. 505.

    Article  CAS  Google Scholar 

  112. S. Seal et al., J. Vac. Sci. Technol. A, 16 (3) (1998), p. 1901.

    Article  CAS  Google Scholar 

  113. S. Seal et al., Polycrystalline Thin Films Structure, Texture, Properties, and Applications III, Vol. 472, ed. J. Im (Warrendale, PA: MRS, 1997), p. 269.

    Google Scholar 

  114. T.P. Mollart et al., Surf. Coat. Technol., 74–75 (1995), p. 491.

    Article  Google Scholar 

  115. D. Briggs and M.P. Seah, Practical Surface Analysis (New York: Wiley, 1990).

    Google Scholar 

  116. E. Galvanetto et al., Thin Solid Films, 384 (2001), p. 223.

    Article  CAS  Google Scholar 

  117. J. Zhao et al., Appl. Surf. Sci., 158 (2000), p. 246.

    Article  CAS  Google Scholar 

  118. A.E. Patty, H. Margdin, and J.P. Nielson, Tran. Amer. Soc. Metais, 46 (1954), p. 312.

    Google Scholar 

  119. I. Milosev, H.H. Strehblow, and B. Navinsek, Surf. Coat. Technol., 74 (1995), p. 897.

    Article  Google Scholar 

  120. J. Jagielski et al., Appl. Surf. Sci., 156 (2000), p. 47.

    Article  CAS  Google Scholar 

  121. M. Li, E. Knystautas, and M. Krishnader, Surf. Coat. Technol., 138 (2001), p. 220.

    Article  CAS  Google Scholar 

  122. I. Milosev, H.H. Strechblow, and B. Navinsek, Thin Solid Flims, 303 (1997), p. 2461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Sudipta Seal, University of Central Florida, Advanced Materials Processing and Analysis Center, and Mechanical, Materials and Aerospace Engineering, Eng. 381, 4000 University Blvd., Orlando, Florida, 32816; (407) 823-5227; fax (407) 823-0208; e-mail sseal@pegasus.cc.ucf.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navinsek, B., Seal, S. Transition metal nitride functional coatings. JOM 53, 51–54 (2001). https://doi.org/10.1007/s11837-001-0072-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-001-0072-1

Keywords

Navigation