Skip to main content
Log in

A Review of Recent Progress in Molecular Dynamics and Coarse-Grain Simulations Assisted Understanding of Wettability

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Wetting phenomena are ubiquitous in nature and technology. An accurate control in designing novel self-clean coating material requires a profound understanding of importance of low surface energy materials and surface topography. Computational modelling and simulations play a significant role to gain an in-depth knowledge of wettability phenomena. In this review, the previously attempted theoretical and computational studies employing different polymeric materials are revealed. In particular, authors focus on literature wherein wetting by water droplets, parameters that influence the wetting characteristics, different contact angle (CA) measurement techniques, and wetting of different polymeric materials have been addressed. Recent advancements in construction of different water models, their meticulous simulation, and the application of advanced computational tools have increasingly prompted to realize more realistic substrate-fluid models (polymer-water droplet) deeply. Finally, perspectives on theoretical modelling and simulations in the fields of wettability estimation are presented in the section of concluding remarks and outlook. Overall, this review brings together and highlights the significant advancements that aid in an improved understanding of wettability to enable early-stage researchers to prudently plan, simulate and design novel self-clean coating materials by overcoming limitations related to atomistic/mesoscopic simulations. This improved understanding shall ensure to eliminate the demerits associated with existing manufacturing technologies.

Graphical abstract

It demonstrates the growing demand for the use of MD simulation for the fundamental understandings in the coating field. Source of data: Web of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

LAMMPS:

Large-scale atomic/molecular massively parallel simulator

MS:

Materials studio

SPC:

Simple point charge

SPC/E:

Simple point charge extended

TIP3P:

Transferable intermolecular potential with 3 points

TIP4P:

Transferable intermolecular potential with 4 points

CA:

Contact angle

LJ:

Lennard–Jones

OCA:

Oil contact angle

CB:

Cassie-Baxter

PBC:

Periodic boundary conditions

MM:

Molecular mechanics

PVAc:

Poly(vinyl acetate)

PVOH:

Poly(vinyl alcohol)

PVDF:

Poly(vinylidene fluoride)

M w :

Molecular weight

MD:

Molecular dynamics

DFT:

Density-functional theory

VMD:

Visual molecular dynamics

R f :

Roughness factor

References

  1. Geoghegan M, Krausch G (2003) Wetting at polymer surfaces and interfaces. Prog Polym Sci 28:261–302. https://doi.org/10.1016/S0079-6700(02)00080-1

    Article  Google Scholar 

  2. Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review. Polym Plast Technol Eng 57:1932–1952. https://doi.org/10.1080/03602559.2018.1447128

    Article  Google Scholar 

  3. Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33:191–269

    Article  Google Scholar 

  4. Krausch G (1995) Surface induced self assembly in thin polymer films. Mater Sci Eng R 14:5–6. https://doi.org/10.1016/0927-796X(94)00173-1

    Article  Google Scholar 

  5. Muralidharan K, Simmons JH, Deymier PA, Runge K (2005) Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non-Crystall Solids 351(18):1532–1542

    Article  Google Scholar 

  6. Groot RD, Warren PB (1998) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. https://doi.org/10.1063/1.474784

    Article  Google Scholar 

  7. Gogoi R, Sethi SK, Manik G (2021) Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: a molecular dynamics study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.148162

    Article  Google Scholar 

  8. Saini A, Yadav C, Sethi SK et al (2021) Microdesigned nanocellulose-based flexible antibacterial aerogel architectures impregnated with bioactive cinnamomum cassia. ACS Appl Mater Interfaces 13:4874–4885. https://doi.org/10.1021/acsami.0c20258

    Article  Google Scholar 

  9. Verma A, Parashar A (2018) Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diam Relat Mater 88:193–203. https://doi.org/10.1016/j.diamond.2018.07.014

    Article  Google Scholar 

  10. Verma A, Parashar A, Packirisamy M (2018) Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. WIREs Comput Mol Sci 8:e1346. https://doi.org/10.1002/wcms.1346

    Article  Google Scholar 

  11. Verma A, Kumar R, Parashar A (2019) Enhanced thermal transport across a bi-crystalline graphene-polymer interface: An atomistic approach. Phys Chem Chem Phys 21:6229–6237. https://doi.org/10.1039/c9cp00362b

    Article  Google Scholar 

  12. de Coninck J, Blake TD (2008) Wetting and molecular dynamics simulations of simple liquids. Annu Mater Res. https://doi.org/10.1146/annurev.matsci38060407130339

    Article  Google Scholar 

  13. Paper C, Ac SJE, Ac GV (2007) Simulation of wear processes using molecular dynamics (MD) simulations. https://doi.org/10.13140/2.1.4149.5680

  14. Sharma S, Kumar P, Chandra R (2019) Introduction to molecular dynamics. Mol Dyn Simul Nanocomposites using BIOVIA Mater Stud Lammps Gromacs 23:1–38. https://doi.org/10.1016/B978-0-12-816954-4.00001-2

    Article  Google Scholar 

  15. Lee HC, Son Y, Lee S (2020) Study of compatibility between aliphatic polyketone terpolymer and poly(styrene- r -acrylonitrile). J Appl Polym Sci 137:48743. https://doi.org/10.1002/app.48743

    Article  Google Scholar 

  16. Sethi SK, Soni L, Manik G (2018) Component compatibility study of poly(dimethyl siloxane) with poly(vinyl acetate) of varying hydrolysis content: an atomistic and mesoscale simulation approach. J Mol Liq 272:73–83. https://doi.org/10.1016/J.MOLLIQ.2018.09.048

    Article  Google Scholar 

  17. Kumar N, Manik G (2016) Molecular dynamics simulations of polyvinyl acetate-perfluorooctane based anti-stain coatings. Polymer (Guildf) 100:194–205. https://doi.org/10.1016/j.polymer.2016.08.019

    Article  Google Scholar 

  18. Li K, Gu B (2020) Molecular dynamic simulations investigating the wetting and interfacial properties of acrylonitrile nanodroplets in contact with variously functionalized graphene sheets. Chem Phys Lett 739:137023. https://doi.org/10.1016/j.cplett.2019.137023

    Article  Google Scholar 

  19. Lundgren M, Allan NL, Cosgrove T, George N (2003) Molecular dynamics study of wetting of a pillar surface. Langmuir. https://doi.org/10.1021/LA034224H

    Article  Google Scholar 

  20. Chen J, Hanson BJ, Pasquinelli MA (2014) Molecular dynamics simulations for predicting surface wetting. AIMS Mater Sci. https://doi.org/10.3934/matersci.2014.2.121

    Article  Google Scholar 

  21. Yuan Q, Yang J, Sui Y, Zhao Y-P (2017) Dynamics of dissolutive wetting: a molecular dynamics study. Langmuir 33:6464–6470. https://doi.org/10.1021/ACS.LANGMUIR.7B01154

    Article  Google Scholar 

  22. Verma A, Zhang W, van Duin ACT (2021) ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys Chem Chem Phys 23:10822–10834. https://doi.org/10.1039/d1cp00546d

    Article  Google Scholar 

  23. Sethi SK, Soni L, Shankar U et al (2020) A molecular dynamics simulation study to investigate poly(vinyl acetate)-poly(dimethyl siloxane) based easy-clean coating: an insight into the surface behavior and substrate interaction. J Mol Struct 1202:127342. https://doi.org/10.1016/j.molstruc.2019.127342

    Article  Google Scholar 

  24. Sethi SK, Shankar U, Manik G (2019) Fabrication and characterization of non-fluoro based transparent easy-clean coating formulations optimized from molecular dynamics simulation. Prog Org Coatings 136:105306. https://doi.org/10.1016/j.porgcoat.2019.105306

    Article  Google Scholar 

  25. Shaikh AR, Rajabzadeh S, Matsuo R et al (2016) Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations. Appl Surf Sci 369:241–250. https://doi.org/10.1016/j.apsusc.2016.02.084

    Article  Google Scholar 

  26. Hu D, Zhang Y, Su M et al (2016) Effect of molecular weight on CO2-philicity of poly(vinyl acetate) with different molecular chain structure. J Supercrit Fluids 118:96–106. https://doi.org/10.1016/j.supflu.2016.07.024

    Article  Google Scholar 

  27. Agrawal G, Samal SK, Sethi SK et al (2019) Microgel/silica hybrid colloids: Bioinspired synthesis and controlled release application. Polymer Guildf 178:121599

    Article  Google Scholar 

  28. Liu J, Xu Q, Jiang J (2019) A molecular simulation protocol for swelling and organic solvent nanofiltration of polymer membranes. J Memb Sci 573:639–646. https://doi.org/10.1016/j.memsci.2018.12.035

    Article  Google Scholar 

  29. Sethi SK, Singh M, Manik G (2020) A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Mol Syst Des Eng. https://doi.org/10.1039/D0ME00068J

    Article  Google Scholar 

  30. Sun SY, Nie XY, Huang J, Yu JG (2020) Molecular simulation of diffusion behavior of counterions within polyelectrolyte membranes used in electrodialysis. J Memb Sci 595:117528. https://doi.org/10.1016/j.memsci.2019.117528

    Article  Google Scholar 

  31. Shankar U, Sethi SK, Singh BP et al (2021) Optically transparent and lightweight nanocomposite substrate of poly(methyl methacrylate-co-acrylonitrile)/MWCNT for optoelectronic applications: an experimental and theoretical insight. J Mater Sci 5630(56):17040–17061. https://doi.org/10.1007/S10853-021-06390-3

    Article  Google Scholar 

  32. Li, Bai LF, Shi YB MY et al (2020) The influence of temperature and component proportion on stability, sensitivity, and mechanical properties of LLM-105/HMX co-crystals via molecular dynamics simulation. J Mol Model 26:1–10. https://doi.org/10.1007/s00894-020-4329-4

    Article  Google Scholar 

  33. Du D, Tang C, Zhang J, Hu D (2020) Effects of hydrogen sulfide on the mechanical and thermal properties of cellulose insulation paper: a molecular dynamics simulation. Mater Chem Phys 240:122153. https://doi.org/10.1016/j.matchemphys.2019.122153

    Article  Google Scholar 

  34. Drioli, Enrico, Giuseppe Barbieri, and Adele Brunetti (eds) (2017) Membrane engineering for the treatment of gases Volume 2: Gas-separation Issues Combined with Membrane Reactors: Edition 2. Vol. 1, Royal Society of Chemistry

  35. Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22–49

    Article  Google Scholar 

  36. Genheden S, Reymer A, Saenz-Méndez P, Eriksson LA (2017) Chapter 1. Computational chemistry and molecular modelling basics. Royal Soci Chem. https://doi.org/10.1039/9781788010139-00001

    Article  Google Scholar 

  37. Baschnagel J, Binder K, Doruker P, et al (2007) Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives. In: Viscoelasticity, Atomistic Models, Statistical Chemistry

  38. Harmandaris VA, Adhikari NP, Van Der Vegt NFA, Kremer K (2006) Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules. https://doi.org/10.1021/ma0606399

    Article  Google Scholar 

  39. Shih AY, Arkhipov A, Freddolino PL, Schulten K (2006) Coarse grained protein-lipid model with application to lipoprotein particles. J Phys Chem B. https://doi.org/10.1021/jp0550816

    Article  Google Scholar 

  40. Han X, Ding H (2017) Investigation on the impact-contact between droplet and rough surface in mechanical polishing using atomic modeling method. Adv Mech Eng 9:1–9. https://doi.org/10.1177/1687814017710405

    Article  Google Scholar 

  41. Bilby MG (2002) No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title Kaos GL Derg 3:147-173

  42. Sonoda MT, Moreira NH, Martínez L et al (2004) A review on the dynamics of water. Brazilian J Phys 34:3–16

    Article  Google Scholar 

  43. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w

    Article  Google Scholar 

  44. Lin KH, Prlj A, Corminboeuf C (2017) A rising star: truxene as a promising hole transport material in perovskite solar cells. J Phys Chem C 121:21729–21739. https://doi.org/10.1021/acs.jpcc.7b07355

    Article  Google Scholar 

  45. Hummer G, Soumpasis DM, Neumann M (1992) Pair correlations in an NaCi-SPC water model simulations versus extended RISM computations. Mol Phys 77:769–785. https://doi.org/10.1080/00268979200102751

    Article  Google Scholar 

  46. Jiao S, Duan C, Xu Z (2017) Structures and thermodynamics of water encapsulated by grapheme. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-02582-7

    Article  Google Scholar 

  47. Koishi T, Yasuoka K, Fujikawa S, Zeng XC (2011) Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the cassie and wenzel states : a molecular dynamics. ACS Nano 5(9):6834–6842

    Article  Google Scholar 

  48. Park JH, Aluru NR (2009) Temperature-dependent wettability on a titanium dioxide surface. Mol Simul 35:31–37. https://doi.org/10.1080/08927020802398884

    Article  Google Scholar 

  49. Li H, Yan T, Fichthorn KA, Yu S (2018) Dynamic contact angles and mechanisms of motion of water droplets moving on nanopillared superhydrophobic surfaces: a molecular dynamics simulation study. Langmuir 34:9917–9926. https://doi.org/10.1021/acs.langmuir.8b01324

    Article  Google Scholar 

  50. Prakash S, Xi E, Patel AJ (2016) Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proc Natl Acad Sci U S A 113:5508–5513. https://doi.org/10.1073/pnas.1521753113

    Article  Google Scholar 

  51. Wang J, Chen S, Chen D (2015) Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study. Phys Chem Chem Phys 17:30533–30539. https://doi.org/10.1039/c5cp05045f

    Article  Google Scholar 

  52. Zambrano HA, Walther JH, Jaffe RL (2014) Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures. J Mol Liq 198:107–113. https://doi.org/10.1016/j.molliq.2014.06.003

    Article  Google Scholar 

  53. Zhang K, Wang F, Zhao X (2016) The self-propelled movement of the water nanodroplet in different surface wettability gradients: a contact angle view. Comput Mater Sci 124:190–194. https://doi.org/10.1016/j.commatsci.2016.07.026

    Article  Google Scholar 

  54. Zong D, Yang Z, Duan Y (2017) Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: a molecular dynamics study. Chem Phys Lett 685:27–33. https://doi.org/10.1016/j.cplett.2017.07.013

    Article  Google Scholar 

  55. Miqdad AM, Datta S, Das AK, Das PK (2016) Effect of electrostatic incitation on the wetting mode of a nano-drop over a pillar-arrayed surface. RSC Adv 6:110127–110133. https://doi.org/10.1039/c6ra20574g

    Article  Google Scholar 

  56. Song F, Ma L, Fan J et al (2018) Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields. Phys Chem Chem Phys 20:11987–11993. https://doi.org/10.1039/c8cp00956b

    Article  Google Scholar 

  57. Ho TA, Papavassiliou DV, Lee LL, Strioloa A (2011) Liquid water can slip on a hydrophilic surface. Proc Natl Acad Sci U S A 108:16170–16175. https://doi.org/10.1073/pnas.1105189108

    Article  Google Scholar 

  58. Makaremi M, Jhon MS, Mauter MS, Biegler LT (2016) Surface wetting study via pseudocontinuum modeling. J Phys Chem C 120:11528–11534. https://doi.org/10.1021/acs.jpcc.6b02142

    Article  Google Scholar 

  59. Zhu C, Gao Y, Li H et al (2016) Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planarpeptide network. Proc Natl Acad Sci U S A 113:12946–12951. https://doi.org/10.1073/pnas.1616138113

    Article  Google Scholar 

  60. Wang FC, Wu HA (2013) Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter 9:5703–5709. https://doi.org/10.1039/c3sm50530h

    Article  Google Scholar 

  61. Weiß RG, Heyden M, Dzubiella J (2015) Curvature dependence of hydrophobic hydration dynamics. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.114.187802

    Article  Google Scholar 

  62. Foroutan M, Fatemi SM, Esmaeilian F et al (2018) Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient. Phy Fluids. https://doi.org/10.1063/1.5021547

    Article  Google Scholar 

  63. Jaffe RL, Gonnet P, Werder T et al (2004) Water-carbon interactions 2: calibration of potentials using contact angle data for different interaction models. Mol Simul 30:205–216. https://doi.org/10.1080/08927020310001659124

    Article  Google Scholar 

  64. Liu J, Wang C, Guo P et al (2013) Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces. J Chem Phys. https://doi.org/10.1063/1.4841815

    Article  Google Scholar 

  65. Wang Q, Xie H, Hu Z, Liu C (2019) The impact of the electric field on surface condensation of water vapor: Insight from molecular dynamics simulation. Nanomaterials. https://doi.org/10.3390/nano9010064

    Article  Google Scholar 

  66. Hiratsuka M, Emoto M, Konno A, Ito S (2019) Molecular dynamics simulation of the influence of nanoscale structure on waterwetting and condensation. Micromachines. https://doi.org/10.3390/mi10090587

    Article  Google Scholar 

  67. Zhang J, Borg MK, Reese JM (2017) Multiscale simulation of dynamic wetting. Int J Heat Mass Transf 115:886–896. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.034

    Article  Google Scholar 

  68. Ferdows M, Ota M (2005) Molecular simulation study for CO2 clathrate hydrate. Chem Eng Technol 28:168–173. https://doi.org/10.1002/ceat.200407056

    Article  Google Scholar 

  69. Jorgensen WL (1981) Transferable intermolecular potential functions for water, alcohols, and ethers. application to liquid water. J Am Chem Soc 103:335–340. https://doi.org/10.1021/ja00392a016

    Article  Google Scholar 

  70. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  71. Lawrence CP, Skinner JL (2003) Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett 372:842–847. https://doi.org/10.1016/S0009-2614(03)00526-8

    Article  Google Scholar 

  72. Gilet T, Bush JWM (2009) The fluid trampoline: droplets bouncing on a soap film. J Fluid Mech 625:167–203. https://doi.org/10.1017/S0022112008005442

    Article  MathSciNet  MATH  Google Scholar 

  73. Bird JC, Dhiman R, Kwon HM, Varanasi KK (2013) Reducing the contact time of a bouncing drop. Nature 503:385–388. https://doi.org/10.1038/nature12740

    Article  Google Scholar 

  74. Murad S, Law CK (1999) Molecular simulation of droplet collision in the presence of ambient gas. Mol Phys 96:81–85. https://doi.org/10.1080/00268979909482940

    Article  Google Scholar 

  75. Tembely V, Soucemarianadin D (2019) Numerical simulations of polymer solution droplet impact on surfaces of different wettabilities. Processes 7:798. https://doi.org/10.3390/pr7110798

    Article  Google Scholar 

  76. Koishi T, Yasuoka K, Zeng XC (2017) Molecular dynamics simulation of water nanodroplet bounce back from flat and nanopillared surface. Langmuir 33:10184–10192. https://doi.org/10.1021/acs.langmuir.7b02149

    Article  Google Scholar 

  77. Bange PG, Bhardwaj R (2016) Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces. Theor Comput Fluid Dyn 30:211–235. https://doi.org/10.1007/s00162-015-0376-3

    Article  Google Scholar 

  78. Bartolo D, Bouamrirene F, Verneuil É et al (2006) Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. EPL Europhysics Lett. https://doi.org/10.1209/EPL/I2005-10522-3

    Article  Google Scholar 

  79. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18:5818–5822. https://doi.org/10.1021/la020088p

    Article  Google Scholar 

  80. Jung YC, Bhushan B (2009) Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Langmuir 25:9208–9218. https://doi.org/10.1021/la900761u

    Article  Google Scholar 

  81. Richard D, Clanet C, Quéré D (1994) Contact time of a bouncing drop. Springer, Berlin

    Google Scholar 

  82. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc London 95:65–87. https://doi.org/10.1098/rstl.1805.0005

    Article  Google Scholar 

  83. Santiso EE, Herdes C, Müller EA (2013) On the calculation of solid-fluid contact angles from molecular dynamics. Entropy 15:3734–3745. https://doi.org/10.3390/e15093734

    Article  MATH  Google Scholar 

  84. Malani A, Raghavanpillai A, Wysong EB, Rutledge GC (2012) Can dynamic contact angle be measured using molecular modeling? Phys Rev Lett 109:1–5. https://doi.org/10.1103/PhysRevLett.109.184501

    Article  Google Scholar 

  85. Gao L, McCarthy TJ (2007) How wenzel and cassie were wrong. Langmuir 23:3762–3765. https://doi.org/10.1021/la062634a

    Article  Google Scholar 

  86. Tolman RC (1949) The effect of droplet size on surface tension. J Chem Phys 17:333–337. https://doi.org/10.1063/1.1747247

    Article  Google Scholar 

  87. Malijevsk A, Jackson G (2012) A perspective on the interfacial properties of nanoscopic liquid drops. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/24/46/464121

    Article  Google Scholar 

  88. Hautman J, Klein ML (1991) Microscopic wetting phenomena. Phys Rev Lett 67:1763–1766. https://doi.org/10.1103/PhysRevLett.67.1763

    Article  Google Scholar 

  89. Khalkhali M, Kazemi N, Zhang H, Liu Q (2017) Wetting at the nanoscale: a molecular dynamics study. J Chem Phys. https://doi.org/10.1063/1.4978497

    Article  Google Scholar 

  90. Peng H, Nguyen AV, Birkett GR (2012) Determination of contact angle by molecular simulation using number and atomic density contours. Mol Simul 38:945–952. https://doi.org/10.1080/08927022.2012.678846

    Article  Google Scholar 

  91. Huang C, Xu F, Sun Y (2017) Effects of morphology, tension and vibration on wettability of graphene: a molecular dynamics study. Comput Mater Sci 139:216–224. https://doi.org/10.1016/j.commatsci.2017.07.017

    Article  Google Scholar 

  92. Xu K, Zhang J, Hao X et al (2018) Wetting properties of defective graphene oxide: a molecular simulation study. Molecules 23:1–8. https://doi.org/10.3390/molecules23061439

    Article  Google Scholar 

  93. Liu Q, Xu B (2015) Wettability of water droplet on misoriented graphene bilayer sructure: a molecular dynamics study. AIP Adv. https://doi.org/10.1063/1.4923193

    Article  Google Scholar 

  94. Xu S, Wang J, Wu J et al (2018) Oil contact angles in a water-decane-silicon dioxide system: effects of surface charge. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2521-6

    Article  Google Scholar 

  95. Jiang H, Müller-Plathe F, Panagiotopoulos AZ (2017) Contact angles from Young’s equation in molecular dynamics simulations. J Chem Phys 147:084708. https://doi.org/10.1063/1.4994088

    Article  Google Scholar 

  96. Domb C (2020) Phase transitions and critical phenomena. Elsevier

  97. Rane KS, Kumar V, Errington JR (2011) Monte Carlo simulation methods for computing the wetting and drying properties of model systems. J Chem Phys 135:234102. https://doi.org/10.1063/1.3668137

    Article  Google Scholar 

  98. Kumar V, Errington JR (2014) The use of monte carlo simulation to obtain the wetting properties of water. Phys Procedia 53:44–49. https://doi.org/10.1016/j.phpro.2014.06.024

    Article  Google Scholar 

  99. Hu S, Ren X, Bachman M et al (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chem. https://doi.org/10.1021/AC025700W

    Article  Google Scholar 

  100. Sethi SK, Manik G, Sahoo SK (2019) Fundamentals of superhydrophobic surfaces. In: Superhydrophobic Polymer Coatings, pp 3-29, Elsevier, Armsterdam

  101. Kitabata M, Taddese T, Okazaki S (2018) Molecular dynamics study on wettability of poly(vinylidene fluoride) crystalline and amorphous surfaces. Langmuir 34:12214–12223. https://doi.org/10.1021/acs.langmuir.8b02286

    Article  Google Scholar 

  102. Darvishi M, Foroutan M (2016) Molecular investigation of oil-water separation using PVDF polymer by molecular dynamic simulation. RSC Adv 6:74124–74134. https://doi.org/10.1039/c6ra11834h

    Article  Google Scholar 

  103. Raj R, Maroo SC, Wang EN (2013) Wettability of graphene. Nano Lett 13:1509–1515. https://doi.org/10.1021/nl304647t

    Article  Google Scholar 

  104. Andrews JE, Sinha S, Chung PW, Das S (2016) Wetting dynamics of a water nanodrop on graphene. Phys Chem Chem Phys 18:23482–23493. https://doi.org/10.1039/c6cp01936f

    Article  Google Scholar 

  105. Rafiee J, Mi X, Gullapalli H et al (2012) Wetting transparency of graphene. Nat Mater 11:217–222. https://doi.org/10.1038/nmat3228

    Article  Google Scholar 

  106. Giovannetti G, Khomyakov PA, Brocks G et al (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B - Condens Matter Mater Phys 76:073103. https://doi.org/10.1103/PhysRevB.76.073103

    Article  Google Scholar 

  107. Dean CR, Young AF, Meric I et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726. https://doi.org/10.1038/nnano.2010.172

    Article  Google Scholar 

  108. Li Y, Wang H, Xie L et al (2011) MoS 2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299. https://doi.org/10.1021/ja201269b

    Article  Google Scholar 

  109. Ramakrishna Matte HSS, Gomathi A, Manna AK et al (2010) MoS2 and WS2 analogues of graphene. Angew Chemie 122:4153–4156. https://doi.org/10.1002/ange.201000009

    Article  Google Scholar 

  110. Ambrosia MS, Ha MY (2018) A molecular dynamics study of Wenzel state water droplets on anisotropic surfaces. Comput Fluids 163:1–6. https://doi.org/10.1016/j.compfluid.2017.12.013

    Article  MathSciNet  MATH  Google Scholar 

  111. Zhao ZY, Li T, Duan YR et al (2017) Wetting and coalescence of the liquid metal on the metal substrate. Chinese Phys B. https://doi.org/10.1088/1674-1056/26/8/083104

    Article  Google Scholar 

  112. Mohseni M, Abdollahy M, Poursalehi R, Khalesi MR (2018) Quantifying the spreading factor to compare the wetting properties of minerals at molecular level – case study : sphalerite surface. Physicochem Problem Mineral Process 54:646–656

    Google Scholar 

  113. Chai J, Liu S, Yang X (2009) Molecular dynamics simulation of wetting on modified amorphous silica surface. Appl Surf Sci 255:9078–9084. https://doi.org/10.1016/j.apsusc.2009.06.109

    Article  Google Scholar 

  114. Bormashenko E (2015) Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interface Sci 222:92–103

    Article  Google Scholar 

  115. Giacomello A, Meloni S, Chinappi M, Casciola CM (2012) Cassie-baxter and wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir 28:10764–10772. https://doi.org/10.1021/la3018453

    Article  Google Scholar 

  116. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 27(2):457–460. https://doi.org/10.1038/nmat924

    Article  Google Scholar 

  117. Krupenkin TN, Taylor JA, Schneider TM, Yang S (2004) From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir. https://doi.org/10.1021/LA036093Q

    Article  Google Scholar 

  118. Bahadur V, Garimella SV (2008) Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces. Langmuir 24:8338–8345. https://doi.org/10.1021/LA800556C

    Article  Google Scholar 

  119. McHale G, Aqil S, Shirtcliffe NJ et al (2005) Analysis of Droplet Evaporation on a Superhydrophobic Surface. Langmuir 21:11053–11060. https://doi.org/10.1021/LA0518795

    Article  Google Scholar 

  120. Giovambattista N, Debenedetti PG, Rossky PJ (2007) Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B 111:9581–9587. https://doi.org/10.1021/jp071957s

    Article  Google Scholar 

  121. Bhattarai B, Priezjev NV (2018) Wetting properties of structured interfaces composed of surface-attached spherical nanoparticles. Comput Mater Sci 143:497–504. https://doi.org/10.1016/j.commatsci.2017.11.036

    Article  Google Scholar 

  122. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem. https://doi.org/10.1039/b412803f

    Article  Google Scholar 

  123. Nguyen CT, Barisik M, Kim B (2018) Wetting of chemically heterogeneous striped surfaces: molecular dynamics simulations. AIP Adv 8:065003. https://doi.org/10.1063/1.5031133

    Article  Google Scholar 

  124. Chen L, Wang SY, Xiang X, Tao WQ (2020) Mechanism of surface nanostructure changing wettability: a molecular dynamics simulation. Comput Mater Sci 171:109223. https://doi.org/10.1016/j.commatsci.2019.109223

    Article  Google Scholar 

  125. Yaghoubi H, Foroutan M (2018) Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation. Phys Chem Chem Phys 20:22308–22319. https://doi.org/10.1039/c8cp03762k

    Article  Google Scholar 

  126. Song F, Ma L, Fan J et al (2018) Wetting behaviors of a nano-droplet on a rough solid substrate under perpendicular electric field. Nanomaterials 8:340. https://doi.org/10.3390/nano8050340

    Article  Google Scholar 

  127. Zhang Z, Matin MA, Ha MY, Jang J (2016) Molecular dynamics study of the hydrophilic-to-hydrophobic switching in the wettability of a gold surface corrugated with spherical cavities. Langmuir 32:9658–9663. https://doi.org/10.1021/acs.langmuir.6b02378

    Article  Google Scholar 

  128. Li Q, Wang B, Zhao Z (2014) Molecular dynamics simulation of wetting and interfacial behaviors of argon fluid confined in smooth and groove-patterned rough nano-channels. Comput Mater Sci 95:121–128. https://doi.org/10.1016/j.commatsci.2014.07.006

    Article  Google Scholar 

  129. Wang Y, Shangguan Q, Zhang D (2019) Many-body dissipative particle dynamics simulation of the anisotropic effect of droplet wetting on stripe-patterned heterogeneous surfaces. Appl Surf Sci 494:675–683. https://doi.org/10.1016/j.apsusc.2019.07.213

    Article  Google Scholar 

  130. Wang Y, Jian M, Zhang X (2019) Lateral motion of a droplet after impacting on groove-patterned superhydrophobic surfaces. Colloids Surfaces A Physicochem Eng Asp 570:48–54. https://doi.org/10.1016/j.colsurfa.2019.03.013

    Article  Google Scholar 

  131. Savoy ES, Escobedo FA (2012) Molecular simulations of wetting of a rough surface by an oily fluid: effect of topology, chemistry, and droplet size on wetting transition rates. Langmuir 28:3412–3419. https://doi.org/10.1021/la203921h

    Article  Google Scholar 

  132. Savoy ES, Escobedo FA (2012) Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry. Langmuir 28:16080–16090. https://doi.org/10.1021/la303407r

    Article  Google Scholar 

  133. Shahraz A, Borhan A, Fichthorn KA (2013) Wetting on physically patterned solid surfaces: the relevance of molecular dynamics simulations to macroscopic systems. Langmuir 29:11632–11639. https://doi.org/10.1021/la4023618

    Article  Google Scholar 

  134. Khan S, Singh JK (2014) Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study. Mol Simul 40:458–468. https://doi.org/10.1080/08927022.2013.819578

    Article  Google Scholar 

  135. Chen S, Wang J, Ma T, Chen D (2014) Molecular dynamics simulations of wetting behavior of water droplets on polytetrafluorethylene surfaces. J Chem Phys 140:114704. https://doi.org/10.1063/1.4868641

    Article  Google Scholar 

  136. Hirvi JT, Pakkanen TA (2006) Molecular dynamics simulations of water droplets on polymer surfaces. J Chem Phys 125:144712. https://doi.org/10.1063/1.2356470

    Article  Google Scholar 

  137. Sethi SK, KadianAnubhav S et al (2020) Fabrication and analysis of ZnO quantum dots based easy clean coating: a combined theoretical and experimental investigation. ChemistrySelect 5:8942–8950. https://doi.org/10.1002/slct.202001092

    Article  Google Scholar 

  138. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Article  Google Scholar 

  139. Yan M, Yang X, Lu Y (2013) Wetting behavior of water droplet on solid surfaces in solvent environment: A molecular simulation study. Colloids Surfaces A Physicochem Eng Asp 429:142–148. https://doi.org/10.1016/j.colsurfa.2013.03.067

    Article  Google Scholar 

  140. Liu SY, Yang XN, Qin Y (2010) Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces. Chinese Sci Bull 55:2252–2257. https://doi.org/10.1007/s11434-010-3287-0

    Article  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

SKS conceptualization, writing, methodology, reviewing and editing; SK writing, reviewing and editing; GM conceptualization, reviewing and editing.

Corresponding author

Correspondence to Gaurav Manik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, S.K., Kadian, S. & Manik, G. A Review of Recent Progress in Molecular Dynamics and Coarse-Grain Simulations Assisted Understanding of Wettability. Arch Computat Methods Eng 29, 3059–3085 (2022). https://doi.org/10.1007/s11831-021-09689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09689-1

Navigation