Skip to main content
Log in

Finite Element Modeling of Soil Structure Interaction System with Interface: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Non-linear analysis of soil structure interaction problem is still an active field of research due to development of useful interface element between the soil–soil and soil–structure. In this paper a focused review on coupled finite element modeling of soil structure interaction (SSI) system with soil non-linearity and interface element modeling is discussed. The non-linearity in soil is reviewed with various available constitutive models, whereas the Interface modeling is reviewed with zero thickness and thin layer elements, which is proposed by many researchers from 1970 to till date with special emphasis on behavior of superstructure. Further the paper discusses on the occurrence of ill conditioning due to significance of interface thickness and selection of normal and tangential stiffness during interface modeling. In addition to above, some special interface element (different degree of freedom on top and bottom face of element) in non-linear SSI is also reviewed. Therefore the attention is on advantages and disadvantages of the discussed methods according to their applicability, accuracy and caliber to idealize the superstructure and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Selvadurai APS (1979) Elastic analysis of soil foundation interaction. In Developmnets in geotechnical engineering, vol 17. Elsevier Scientific Publishing Company, Amsterdam

  2. Brinkgreve RBJ (2005) Selection of soil models and parameters for geotechnical engineering application. Soil Const Model Eval Sel Calibration ASCE, pp 69–98

  3. Barros RC, de Vasconcelos LAC, Nogueira CL, Silveira RAM (2017) Interface elements in geotechnical engineering—some numerical aspects and applications. In: XXXVIII Iberian Latin-American congress on computational methods in engineering P.O. Brazil, pp 1–20

  4. Dalili Shoaei M, Huat BBK, Jaafar MS, Alkarni A (2015) Soil-framed structure interaction analysis—a new interface element. Latin Am J Solids Struct 12(2):226–249

    Article  Google Scholar 

  5. Madhira M, Abhishek SV, and Rajyalakshmi K (2015) Modelling ground-foundation interactions. In: Innovations in structural engineering, pp 91–104

  6. Pavlovid MN, Tsikkos S (1982) Beams on quasi-Winkler foundations. Eng Struct 4:113–118

    Article  Google Scholar 

  7. Teodoru I (2009) Beams on elastic foundation the simplified continuum approach. Bull Inst Polit Iaşi t LV (LIX) 4:39–45

    Google Scholar 

  8. Dalili M, Huat BBK, Jaafa MS, Alkarni A (2013) Review of static soil-framed structure interaction. Interact Multiscale Mech 6(1):51–81

    Article  Google Scholar 

  9. Teodoru I (2009) EBBEF2p-A computer code for analyzing beams on elastic foundations. Intersections 6(1):28–44

    Google Scholar 

  10. Tanahashi H (2007) Pasternak model formulation of elastic displacements in the case of a rigid circular foundation. J Asian Archit Build Eng 6(1):167–173

    Article  Google Scholar 

  11. Kerr AD (1965) A study of a new foundation model. Acta Mech 1:135–147

    Article  Google Scholar 

  12. Avramidis IE, Morfidis K (2006) Bending of beams on three-parameter elastic foundation. Int J Solids Struct 43:357–375

    Article  MATH  Google Scholar 

  13. Limkatanyu S, Prachasaree W, Damrongwiriyanupap N, Kwon M, Jung W (2013) Exact stiffness for beams on Kerr-type foundation : the virtual force approach. J Appl Math 2013:1–13

    Article  MATH  Google Scholar 

  14. Boudaa S, Khalfallah S, Bilotta E (2019) Static interaction analysis between beam and layered soil using a two-parameter elastic foundation. Int J Adv Struct Eng 11:21–30

    Article  Google Scholar 

  15. Liu Q, Ma J (2013) analytical model for beams on elastic foundations considering the coupling of horizontal and vertical displacements. J Eng Mech 139:1757–1768

    Article  Google Scholar 

  16. Stavridis LT (2002) Simplified analysis of layered soil–structure interaction. J Struct Eng 128(2):224–230

    Article  Google Scholar 

  17. Girija CVV, Das YC (1988) Parametric study of beams on elastic foundations. J Eng Mech 114(12):2072–2082

    Article  Google Scholar 

  18. Teodoru I, Muşat V (2010) The modified vlasov foundation model: an attractive approach for beams the modified Vlasov foundation model: an attractive approach for beams resting on elastic supports. EJGE 15:1–12

    Google Scholar 

  19. Girjja VCV, Das YC (1991) Modified Vlasov model for beams on elastic foundations. J Geotech Eng 117(6):956–966

    Article  Google Scholar 

  20. Horvath JS (1983) New subgrade model applied to mat foundations. J Geotech Eng 109:1567–1587

    Article  Google Scholar 

  21. Vakili KN, Barciaga T, Lavasan AA, Schanz T (2013) A practical approach to constitutive models for the analysis of geotechnical problems. In: The third international symposium on computational geomechanics (ComGeo III) Krakow, Poland

  22. Lade PV (2005) Overview of constitutive models for soils. In: calibration of constitutive models. ASCE, pp 1–34

  23. Dong W, Hu L, Yu YZ, Lv H (2013) Comparison between Duncan and Chang’s EB model and the generalized plasticity model in the analysis of a high Earth-Rockfill Dam. J Appl Math 2013:1–12. https://doi.org/10.1155/2013/709430

    Article  Google Scholar 

  24. Pandey AK, Bisht RS (2014) Numerical modelling of infilled clay brick masonary under blast loading. Adv Struct Eng 17(4):591–606

    Article  Google Scholar 

  25. Viladkar MN, Godbole PN, Noorzaei J (1994) Modelling of interface for soil–structure interaction studies. Comput Struct 52(4):765–779

    Article  MATH  Google Scholar 

  26. Noorzaei J, Viladkar MN, Godbole PN (1994) Nonlinear soil–structure interaction in plane frames. Eng Comput 11:303–316

    Article  MATH  Google Scholar 

  27. Zdravkovic L, Potts DM, Jackson C (2003) Numerical study of the effect of preloading on undrained bearing capacity. Int J Geomech 3:1–10

    Article  Google Scholar 

  28. Mcdowell GR (2002) A simple non-associated flow model for sand. Granul Matter 4:65–69

    Article  Google Scholar 

  29. Guo R, Li G (2008) Elasto-plastic constitutive model for geotechnical materials with strain-softening behaviour. Comput Geosci 34:14–23

    Article  Google Scholar 

  30. Kim MK, Lade PV (1988) Single hardening constitutive model for frictional materials. Comput Geotech 5:307–324

    Article  Google Scholar 

  31. Schanz T, Vermeer PA, Bonnier PG (1999) The hardening soil model: formulation and verification. In: Beyond 2000 in computational geotechnics-10 years of PLAXIS, pp 1–16

  32. Pramthawee P, Jongpradist P, Kongkitkul W (2011) Evaluation of hardening soil model on numerical simulation of behaviors of high rockfill dams. Songklanakarin J Sci Technol 33(3):325–334

    Google Scholar 

  33. Torkamani MAM (1990) Elasto-plastic analysis for cyclic loading and tresca yield condition. Comput Mech 6:407–422

    Article  MATH  Google Scholar 

  34. Nanda BA, Kuppusamy T (1992) Elastic–plastic analysis of footings on anisotropic soils. J Geotech Eng 118(3):428–448

    Article  Google Scholar 

  35. Lade P(2005) Calibration of the single hardening constitutive model for clays. In: 11th international conference on computer methods and geomechanics, held in Turin, Italy, pp 19–24

  36. Hanna AM (1987) Finite element analysis of footings on layered soils. Math Model Pergam J Ltd 9(11):813–819

    Article  Google Scholar 

  37. Shoaei MD, Alkarni A, Noorzaei J, Jaafar MS, Huat BBK (2012) Review of available approaches for ultimate bearing capacity of two-layered soils. J Civ Eng Manag 18(4):469–482

    Article  Google Scholar 

  38. Viladkar MN, Zedan AJ, Saran S (2014) Nonlinear elastic analysis of shallow footings subjected to eccentric inclined loads. Geomech Geoengin Int J 10:1–12. https://doi.org/10.1080/17486025.2014.902117

    Article  Google Scholar 

  39. Javdanian H (2017) On the behaviour of shallow foundations constructed on reinforced soil slope—a numerical analysis. Int J Geotech Eng 14:1–8. https://doi.org/10.1080/19386362.2017.1416971

    Article  Google Scholar 

  40. Godbole PN, Viladicar MN, Noorzaei J (1991) A modified frontal solver with multi-element and variable degrees of freedom features. Comput Struct 39(5):525–534

    Article  Google Scholar 

  41. Godbole PN, Viladkar MN, Nodrzaei J (1990) Nonlinear soil–structure interaction analysis using coupled finite-infinite elements. Comput Struct 36(6):1089–1096

    Article  Google Scholar 

  42. Viladkar MN, Godbole PN, Noorzaei J (1991) Soil–structure interaction in plane frames using coupled finite-infinite elements. Comput Struct 39(5):535–546

    Article  Google Scholar 

  43. Agrawal R, Hora MS (2010) Effect of differential settlements on nonlinear interaction behaviour of plane frame-soil system. ARPN J Eng Appl Sci 5(7):75–87

    Google Scholar 

  44. Rao S, Rambabu KV, Allam MM (1995) Representation of soil support in analysis of open plane frames. Comput. Struct 55(6):917–925

    Article  Google Scholar 

  45. Noorzaei J, Godbole PN, Viladkar MN (1993) Non-linear soil–structure interaction of plane frames—a parametric study. Comput Struct 49(3):561–566

    Article  Google Scholar 

  46. Jain DK, Hora MS (2014) Interaction analysis of space frame-shear wall-soil system to investigate foundation forces under seismic loading. ARPN J Eng Appl Sci 9(8):1267–1281

    Google Scholar 

  47. Noorzaei J, Viladkar MN, Godbole PN (1995) Elasto-plastic analysis for soil–structure interaction in framed structure. Comput Struct 55(5):797–807

    Article  MATH  Google Scholar 

  48. Noorzaei J, Viladkar MN, Godbole PN (1995) Influence of strain hardening on soil–structure interaction of framed structures. Comput Struct 55(5):789–795

    Article  MATH  Google Scholar 

  49. Ai-shamrani MA, Ai-mashary FA (2003) A simplified computation of the interactive behavior between soils and framed structures. J King Saud Univ Eng Sci 16(1):37–60

    Google Scholar 

  50. Maheshwari P, Viladkar M (2007) Strip footings on a three layer soil system: theory strip footings on a three layer soil system. Int J Geotech Eng 1:47–59

    Article  Google Scholar 

  51. Foye KC, Basu P, Prezzi M (2008) Immediate settlement of shallow foundations bearing on clay. Int J Geomech 8(5):300–310

    Article  Google Scholar 

  52. Dalili M, Alkarni A, Noorzaei J, Paknahad M, Jaafar MS, Huat BBK (2011) Numerical simulation of soil–structure interaction in framed and shear-wall structures. Interact Multiscale Mech 4(1):17–34

    Article  Google Scholar 

  53. Hora MS (2014) Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system. Coupled Syst Mech 3(3):267–289

    Article  Google Scholar 

  54. Swamy HMR, Krishnamoorthy A, Prabakhara DL, Bhavikatti SS (2011) Evaluation of the influence of interface elements for structure—isolated footing—soil interaction analysis. Interact Multiscale Mech 4(1):65–83

    Article  Google Scholar 

  55. Garg V, Hora MS (2012) Interaction effect of space frame-strap footing-soil system on forces in superstructure. ARPN J Eng Appl Sci 7(11):1402–1415

    Google Scholar 

  56. Desai CS, Rigby DB (1995) Modelling and testing of interfaces. Mech Geomater Interfaces 42:107–125. https://doi.org/10.1016/S0922-5382(06)80008-5

    Article  Google Scholar 

  57. Aamidala H, Kim J (2015) A simplified method for modeling soil–structure interaction for rigid frame structures. In: Structures congress, pp 435–446

  58. Farouk H, Farouk M (2015) Validation of using modulus of subgrade reaction to consider the soil structure interaction. AEI, pp 638–650

  59. Farouk H, Farouk M (2016) Soil, foundation, and superstructure interaction for plane two-bay frames. Int J Geomech 16(1):1–11

    Article  Google Scholar 

  60. Abuhajar O, El Naggar H, Newson T (2016) Numerical modeling of soil and surface foundation pressure effects on buried box culvert behavior. J Geotech Geoenviron Eng 142(12):1–13

    Article  Google Scholar 

  61. Robert DJ, Britto A, Setunge S (2020) Efficient approach to simulate soil–pipeline interaction. J Pipeline Syst Eng Pr 11(1):1–16

    Google Scholar 

  62. Elchiti I, Saad G, Najjar S, Nasreddine N (2017) Investigation of active soil pressures on retaining walls using finite element analyses. Geotech Front 278:159–169

    Google Scholar 

  63. Aivazzadeh S, Verchery G (1986) Stress analysis at the interface in adhesive joints by special finite elements. Int J Adhes Adhes 6(4):185–188

    Article  Google Scholar 

  64. Pande GN, Sharma G (1979) On joint/interface elements and associated problems of numerical ill-conditioning. In: Desai CS (ed) Short communication. Wiley, Chichester, NewYork, Brisbane, Toronto, pp 293–300. https://doi.org/10.1002/nag.1610030308

    Chapter  Google Scholar 

  65. Day RA, Potts DM (1994) Zero thickness interface elements-numerical stability and applications. Int J Numer Anal Methods Geomech 18:689–708

    Article  Google Scholar 

  66. Potts DM, Zdravkovic L (1999) Finite element analysis in geotechnical engineering theory. Thomas Telford, London

    Book  Google Scholar 

  67. Kaliakin VN, Li J (1995) Insight into deficiencies associated with commonly used zero-thickness interface elements. Comput Geotech 17:225–252

    Article  Google Scholar 

  68. Damians IP, Yu Y, Lloret A, Bathurst RJ (2015) Equivalent interface properties to model soil-facing interactions with zero-thickness and continuum element methodologies Fundam Appl Geotech. https://doi.org/10.3233/978-1-61499-603-3-1065

    Article  Google Scholar 

  69. Agrawal RK (1986) Behaviour of shallow foundations subjected to eccentric-inclined loads. Thesis (Ph.D.). University of Roorkee, India

  70. Wei W, Tinghao LU (2009) Study on shear behavior of soil–structure interface. In: 2009 international conference on engineering computation, pp 127–130

  71. Qian XX, Yuan HN, Li QM, Zhang BY (2013) Comparative study on interface elements, thin-layer elements, and contact analysis methods in the analysis of high concrete-faced rockfill dams. J Appl Math 2013:1–11. https://doi.org/10.1155/2013/320890

    Article  Google Scholar 

  72. Desai C, Jaman M, Lightner JG, Siriwardane HJ (1984) Thin-layer element for interfaces and joints. Int J Numer Anal Methods Geomech 8:19–43

    Article  Google Scholar 

  73. Zaman MM, Desai S, Drumm EC (1984) Interface model for dynamic soil–structure interaction. J Geotech Eng 110(9):1257–1273

    Article  Google Scholar 

  74. Coutinho ALGA, Martins MAD, Sydenstricker RM, Alves JLD, Landau L (2003) Simple zero thickness kinematically consistent interface elements. Comput Geotech 30:347–374

    Article  Google Scholar 

  75. Karabatakis DA, Hatzigogos TN (2002) Analysis of creep behaviour using interface elements. Comput Geotech 29:257–277

    Article  Google Scholar 

  76. Sharma KG, Desai CS (1992) Analysis and implementation of thin-layer element for interfaces and joints. J Eng Mech 118(12):2442–2462

    Article  Google Scholar 

  77. Wang X, Wang LB (2006) Continuous interface elements subject to large shear deformations. Int J Geomech 6(2):97–107

    Article  Google Scholar 

  78. Rouleau L, Legay A, Deü JF (2018) Interface finite elements for the modelling of constrained viscoelastic layers. Compos Struct 204:847–854

    Article  Google Scholar 

  79. Noorzaei J, Thanoon WAM, Yeat WF, Pour PM, Jaafar MS (2009) Numerical modeling of railway track supporting system using finite-infinite and thin layer elements. IJE Trans Basic 22(2):131–144

    Google Scholar 

  80. Mayer MH, Gaul L (2007) Segment-to-segment contact elements for modelling joint interfaces in finite element analysis. Mech Syst Signal Process 21:724–734

    Article  Google Scholar 

  81. Beer G (1985) An Isoparametric Joint/Interface Element for Finite Element Analysis. Int J Numer Methods Eng 21:585–600

    Article  MATH  Google Scholar 

  82. Silva AR, Das LES (2018) An interface element for numerical analysis of flat plate/shell elements with deformable connection. Latin Am J Solids Struct 15(2):1–16

    Article  Google Scholar 

  83. Lim J, Han Song T, Seog BH (2001) Formulation method for solid-to-beam transition finite elements. KSME Int J 15(11):1499–1506

    Article  Google Scholar 

  84. Liu KX, Lee FH, Yong KY (2004) A new finite element model for pile–soil interaction. Geotech Eng Transp Proj GeoTrans 10:441–451. https://doi.org/10.1061/40744(154)29

    Article  Google Scholar 

  85. Ninic J, Meschke G (2014) Beam-solid contact formulation for finite element analysis of pile–soil interaction with arbitrary discretization. Int J Numer Anal Methods Geomech 38:1453–1476

    Article  Google Scholar 

  86. Montero JA, Haikal G (2018) Modeling beam-solid finite element interface: a stailized formulation for contact and coupled systems. Int J Appl Mech 10(9):1–38

    Article  Google Scholar 

  87. Mao J (2005) A finite element approach to solve contact problems in geotechnical engineering. Int J Numer Anal Methods Geomech 29:525–550

    Article  MATH  Google Scholar 

  88. Skejic A (2012) Interface formulation problem in geotechnical finite element software. EJGE 17:2035–2041

    Google Scholar 

  89. Arslan H (2005) Finite element study of soil structure interface problem. EJGE 10:1–10

    Google Scholar 

  90. Hu L, Pu J (2004) Testing and modeling of soil–structure interface. J Geotech Geoenviorn Eng 130(8):851–860

    Article  Google Scholar 

  91. Zeghal M, Edil TB (2002) Soil structure interaction analysis: modeling the interface. Can Geotech J 39:620–628

    Article  Google Scholar 

  92. Ng PCF, Pyrah IC, Anderson WF (1997) Assessment of three interface elements and modification of the interface element in CRISP90. Comput Geotech 21(4):315–339

    Article  Google Scholar 

  93. Lourenço PB (1996) “A user/programmer guide for the micro-modeling of masonry structures,” Report no. 03.21.1.31.35, TNO Building and Construction Research, Computational Mechanics, Faculty of Civil Engineering, Delft University of Technology, November 1996

  94. Hadid HA, Al-Sadder SZ, Marie I, Bakir M (2004) The role of interface element for strip plate on elastic media. In: International conference on geotechnical engineering UAE

  95. Mousavi SM, Jayawickrama PW, Wood TA, Lawson WD (2017) Selection of soil stiffnesses for the load rating of in-service culverts. In: Geotechnical frontiers 2017 GSP 277, pp 223–232

  96. Desai CS, Nagraj BK (1988) Modeling for cyclic normal and shear behavior of interfaces. J Eng Mech 114:1198–1217

    Article  Google Scholar 

  97. Tancev L, Kokalanov G (1995) Application of joint elements at finite element analysis of embankment dams. Trans Eng Sci 7:1–8

    Google Scholar 

Download references

Acknowledgements

The author is acknowledging to the Director NIT Raipur, Head of the Department and Faculty members, Department of Civil Engineering, NIT Raipur for their continuous support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav D. Dhadse.

Ethics declarations

Conflict of interest

There is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhadse, G.D., Ramtekkar, G.D. & Bhatt, G. Finite Element Modeling of Soil Structure Interaction System with Interface: A Review. Arch Computat Methods Eng 28, 3415–3432 (2021). https://doi.org/10.1007/s11831-020-09505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09505-2

Navigation