Skip to main content

Advertisement

Log in

Methodological-Technological Framework for Construction 4.0

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The construction industry has traditionally been characterised by the high diversity of its agents and processes, high resistance to change and low incorporation of technology compared to manufacturing industries. However, the construction sector is experiencing now a strong renovation process in methodology and tools due to the incorporation of the Building Information Modelling, Lean Construction and Integrated Project Delivery. Meanwhile, in production systems, “Industry 4.0” is a new paradigm that proposes automation, monitoring, sensorisation, robotisation, and digitalisation to improve production and distribution processes. In this context, some authors have proposed the concept of “Construction 4.0” as the counterpart of Industry 4.0 for the construction sector, although the methodological-technological implications are not clear. This research shows a methodological-technological framework adapted to the Architecture, Engineering, Construction, and Operations industry. This papers includes a detailed proposal for a reference frameworks and related technologies that could impact on this sector, responding to its complexities and specific challenges, such as the unique spaces for each work, which are difficult to standardise, arbitrary cost overruns and a productivity far below the average for other industries, increasing competitiveness and globalisation, as opposed to its traditionally local deployment, and an increasing demand to reduce the carbon footprint for all its activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yeganeh AA, Azizi M, Falsafi R (2019) Root causes of design-construction interface problems in iranian design-build projects. J Constr Eng Manag 145(12):1–14. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001727

    Article  Google Scholar 

  2. Håkansson H, Ingemansson M (2013) Industrial renewal within the construction network. Constr Manag Econ 31:40–61. https://doi.org/10.1080/01446193.2012.737470

    Article  Google Scholar 

  3. Nasrun M, Nawi M, Baluch N, Bahauddin AY (2014) Impact of fragmentation issue in construction industry: an overview 3 discussions. In: MATEC Web of conferences 15

  4. Elghaish F, Abrishami S, Hosseini MR, Abu-Samra S, Gaterell M (2019) Integrated project delivery with BIM: an automated EVM-based approach. Autom Constr. https://doi.org/10.1016/j.autcon.2019.102907

    Article  Google Scholar 

  5. Pezeshki Z, Ali S, Ivari S (2016) Applications of BIM: a brief review and future outline. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-016-9204-1

    Article  Google Scholar 

  6. Sanghavi D, Parikh S, Raj SA (2019) Industry 4.0: tools and implementation. Manag Prod Eng Rev 10(3):3–13. https://doi.org/10.24425/mper.2019.129593

    Article  Google Scholar 

  7. Piccarozzi M, Aquilan B (2018) Industry 4.0 in management studies: a systematic literature review. Sustainability 10:1–24. https://doi.org/10.3390/su10103821

    Article  Google Scholar 

  8. Agostini L, Filippini R (2019) Organizational and managerial challenges in the path towards Industry 4.0. Eur J Innov Manag. https://doi.org/10.1108/EJIM-02-2018-0030

    Article  Google Scholar 

  9. Thoben K, Wiesner S, Wuest T (2017) “Industrie 4.0” and smart manufacturing: a review of research issues and application examples. Int J Autom Technol 11(1):4–16

    Article  Google Scholar 

  10. Deloitte (2015) Challenges and solutions for the digital transformation and use of exponential technologies. Zurich

  11. Fatorachian H, Kazemi H (2018) A critical investigation of Industry 4.0 in manufacturing: theoretical operationalisation framework. Prod Plan Control 7287:1–12. https://doi.org/10.1080/09537287.2018.1424960

    Article  Google Scholar 

  12. Becker Da Costa M, Lima L, Schaefer J, Baierle I, Benitez E (2019) Industry 4.0 technologies basic network identification. Scientometrics. https://doi.org/10.1007/s11192-019-03216-7

    Article  Google Scholar 

  13. Kipper LM, Furstenau LB, Hoppe D, Frozza R, Iespen S, Mahlmann L, Kipper LM (2019) Scopus scientific mapping production in industry 4.0 (2011–2018): a bibliometric analysis. Int J Prod Res. https://doi.org/10.1080/00207543.2019.1671625

    Article  Google Scholar 

  14. Alaloul WS, Liew MS, Amila N, Abdullah W, Mohammed BS (2018) Industry revolution IR 4.0: future opportunities and challenges in construction industry. MATEC Web Conf 203:1–7. https://doi.org/10.1051/matecconf/201820302010

    Article  Google Scholar 

  15. Maskuriy R, Selamat A, Ali KN, Maresova P, Krejcar O (2019) Industry 4.0 for the construction industry: How ready is the industry? Appl Sci 9:2819

    Article  Google Scholar 

  16. Creswell JW (2009) Research design: qualitative, quantitative, and mixed methods approaches. Sage, Oaks

    Google Scholar 

  17. Craveiro F, Pinto J, Bartolo H, Jorge P (2019) Additive manufacturing as an enabling technology for digital construction: a perspective on Construction 4.0. Autom Constr 103:251–267. https://doi.org/10.1016/j.autcon.2019.03.011

    Article  Google Scholar 

  18. Rosenfeld Y (2014) Root-cause analysis of construction-cost overruns. J Constr Eng Manag. https://doi.org/10.1061/(ASCE)CO

    Article  Google Scholar 

  19. Freire J, Alarcón LF (2002) Achieving lean design process: improvement methodology. J Constr Eng Manag 128(June):248–256. https://doi.org/10.1061/(ASCE)0733-9364(2002)128:3(248)

    Article  Google Scholar 

  20. Oesterreich TD, Teuteberg F (2016) Computers in Industry Understanding the implications of digitisation and automation in the context of Industry 4.0: a triangulation approach and elements of a research agenda for the construction industry. Comput Ind 83:121–139. https://doi.org/10.1016/j.compind.2016.09.006

    Article  Google Scholar 

  21. Kannimuthu M, Ekambaram P, Raphael B, Kuppuswamy A (2018) Resource unconstrained and constrained project scheduling problems and practices in a multiproject environment. Adv Civ Eng. https://doi.org/10.1155/2018/9579273

    Article  Google Scholar 

  22. Yap Hui BJ, Chow IN, Shavarebi K (2019) Criticality of construction industry problems in developing countries: analyzing malaysian projects. J Manag Eng. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000709

    Article  Google Scholar 

  23. Dubois A, Gadde L (2002) The construction industry as a loosely coupled system: implications for productivity and innovation. Constr Manag Econ 20:621–631. https://doi.org/10.1080/01446190210163543

    Article  Google Scholar 

  24. Zidane YJ, Andersen B, Zidane YJ, Andersen B (2018) The top 10 universal delay factors in construction projects delay factors. Int J Manag Proj Bus 11(3):650–672. https://doi.org/10.1108/IJMPB-05-2017-0052

    Article  Google Scholar 

  25. Shen L, Lin Y (2014) Strategies in using building information modeling (BIM) to solve problems in project management of chinese construction enterprises. Appl Mech Mater 504:2700–2705. https://doi.org/10.4028/www.scientific.net/AMM.501-504.2700

    Article  Google Scholar 

  26. Shuai L, Li H (2013) Problems and effective countermeasures in construction safety management. Appl Mech Mater 439:1702–1705. https://doi.org/10.4028/www.scientific.net/AMM.438-439.1702

    Article  Google Scholar 

  27. Muñoz-La Rivera F, Vielma J, Herrera RF, Carvallo J (2019) Methodology for building information modeling (BIM) implementation in structural engineering companies (SEC). Adv Civ Eng. https://doi.org/10.1155/2019/8452461

    Article  Google Scholar 

  28. Herrera R, Muñoz-La Rivera F, Vargas C, Antio M (2017) Uso e impacto de los modelos nD como herramienta para la dirección de uso e impacto de los modelos nD como herramienta para la dirección de proyectos en la industria de la arquitectura, ingeniería y construcción use and impact of nd models as a tool for. Inf Tecnol 28(4):169–178. https://doi.org/10.4067/S0718-07642017000400019

    Article  Google Scholar 

  29. Mesa HA, Molenaar KR, Alarcón LF (2019) Comparative analysis between integrated project delivery and lean project delivery. Int J Proj Manage 37(3):395–409. https://doi.org/10.1016/j.ijproman.2019.01.012

    Article  Google Scholar 

  30. Sung TK (2018) Technological forecasting & social change Industry 4.0: a Korea perspective. Technol Forecast Soc Chang 132:40–45. https://doi.org/10.1016/j.techfore.2017.11.005

    Article  Google Scholar 

  31. Mehrpouya M, Dehghanghadikolaei A, Fotovvati B (2019) The potential of additive manufacturing in the smart. Appl Sci. https://doi.org/10.3390/app9183865

    Article  Google Scholar 

  32. Machado CG, Winroth MP, Hans E, Ribeiro D (2019) Sustainable manufacturing in Industry 4.0: an emerging research agenda. Int J Prod Res. https://doi.org/10.1080/00207543.2019.1652777

    Article  Google Scholar 

  33. Lu Y (2017) Journal of industrial information integration Industry 4.0: a survey on technologies, applications and open research issues. J Ind Inf Integr 6:1–10. https://doi.org/10.1016/j.jii.2017.04.005

    Article  Google Scholar 

  34. Rejikumar G, Raja V, Arunprasad P, Persis J, Sreeraj K (2019) Industry 4.0: key findings and analysis from the literature arena. Benchmarking Int J. https://doi.org/10.1108/BIJ-09-2018-0281

    Article  Google Scholar 

  35. Da Xu L, Xu EL, Li L (2018) Industry 4.0: state of the art and future trends. Int J Prod Res 56(8):2941–2962. https://doi.org/10.1080/00207543.2018.1444806

    Article  Google Scholar 

  36. Brettel M, Friederichsen N, Keller M, Rosenberg M (2014) How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective. Int J Inf Commun Eng 8(1):37–44

    Google Scholar 

  37. Hozdić E (2015) Smart factory for industry 4.0: a review. Int J Mod Manuf Technol 7(1):28–35

    Google Scholar 

  38. Mohamed M (2018) Challenges and benefits of Industry 4.0: an overview. Int J Supply Oper Manag 5(3):256–265

    MathSciNet  Google Scholar 

  39. Jaehne DM, Li M, Riedel R, Mueller E (2009) Configuring and operating global production networks. Int J Prod Res 47(8):2013–2030. https://doi.org/10.1080/00207540802375697

    Article  MATH  Google Scholar 

  40. Shin WS, Lee YS, Dahlgaard JJ (2019) Total quality management & business excellence a pattern-based decision framework in the era of Industry 4.0. Total Qual Manag. https://doi.org/10.1080/14783363.2019.1665840

    Article  Google Scholar 

  41. Wang S, Wan J, Zhang D, Li D, Zhang C (2016) Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput Netw J 101:158–168. https://doi.org/10.1016/j.comnet.2015.12.017

    Article  Google Scholar 

  42. Mujahid A, Mani V (2019) International journal of information management role of real-time information-sharing through SaaS: an industry 4.0 perspective. Int J Inf Manag 49:301–315. https://doi.org/10.1016/j.ijinfomgt.2019.05.026

    Article  Google Scholar 

  43. Chen Q, García B, Soto D, Adey BT (2018) Construction automation: research areas, industry concerns and suggestions for advancement. Autom Constr 94(May):22–38. https://doi.org/10.1016/j.autcon.2018.05.028

    Article  Google Scholar 

  44. García de Soto B, Agustí-Juan I, Hunhevicz J, Joss S, Graser K, Habert G, Adey BT (2018) Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall. Autom Constr 92:297–311. https://doi.org/10.1016/j.autcon.2018.04.004

    Article  Google Scholar 

  45. Hossain M, Nadeem A (2019) Towards digitizing the construction industry: state of the art of Construction 4.0. Interdepend Struct Eng Constr Manag. https://doi.org/10.14455/ISEC.res.2019.184

    Article  Google Scholar 

  46. Awais M, Henrich D (2013) Human–robot interaction in an unknown human intention scenario. In: 11th international conference on frontiers of information technology, pp 89–94

  47. Akinade OO (2017) Bim-based software for construction waste analytics using Artificial intelligence hybrid models. University of the West of England, Bristol

    Google Scholar 

  48. Gupta R, Tanwar S, Tyagi S, Kumar N (2019) Tactile internet and its applications in 5G era: a comprehensive review. Int J Commun Syst. https://doi.org/10.1002/dac.3981

    Article  Google Scholar 

  49. He D, Ai B, Member S, Guan K, Zhong Z, Member S, Kim I (2017) Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band. IEEE Trans Intell Transp Syst 19:1–15

    Google Scholar 

  50. Yan L, Fang X, Fang Y (2017) A novel network architecture for C/U-plane staggered handover in 5G decoupled. IEEE Trans Intell Transp Syst 19:1–13

    Google Scholar 

  51. Qamar F, Hindia MHDN, Dimyati K, Ariffin K, Iraj N, Amiri S (2019) Interference management issues for the future 5G network: a review. Telecommun Syst 71(4):627–643. https://doi.org/10.1007/s11235-019-00578-4

    Article  Google Scholar 

  52. Plocher J, Panesar A (2019) Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des J. https://doi.org/10.1016/j.matdes.2019.108164

    Article  Google Scholar 

  53. Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz 60(5):677–688. https://doi.org/10.1016/j.bushor.2017.05.011

    Article  Google Scholar 

  54. Khan G, Bueff A, Mihov I, Tessema N, Garrido J, Russel C, Parnia A (2016) Development of transportation asset management and data collection system (TAMS) using mobile applications. Procedia Eng 161:1180–1186. https://doi.org/10.1016/j.proeng.2016.08.536

    Article  Google Scholar 

  55. Moon D, Chung S, Kwon S, Seo J, Shin J (2018) Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Autom Const. https://doi.org/10.1016/j.autcon.2018.07.020

    Article  Google Scholar 

  56. Işık MF, Işık E, Bülbül MA (2018) Application of iOS/Android based assessment and monitoring system for building inventory under seismic impact. Građevinar 70(12):1043–1056. https://doi.org/10.14256/JCE.1522.2015

    Article  Google Scholar 

  57. Pang Z, Xu P, Neill ZO, Gu J, Qiu S, Lu X, Li X (2018) Application of mobile positioning occupancy data for building energy simulation: an engineering case study. Build Environ 141(4800):1–15. https://doi.org/10.1016/j.buildenv.2018.05.030

    Article  Google Scholar 

  58. Vallero A, Cimellaro GP, Mahin S (2015) Earthquake rapid loss assessment using communication systems to improve resilience of emergency responders. Struct Congr 2015:1538–1549

    Google Scholar 

  59. Naser MZ (2019) Fire resistance evaluation through artificial intelligence: a case for timber structures. Fire Saf J. https://doi.org/10.1016/j.firesaf.2019.02.002

    Article  Google Scholar 

  60. Dede T, Kankal M, Vosoughi AR, Grzywinski M, Kripka M (2019) Artificial intelligence applications in civil engineering. Adv Civ Eng. https://doi.org/10.1155/2019/8384523

    Article  Google Scholar 

  61. Salehi H, Burgueño R (2018) Emerging artificial intelligence methods in structural engineering. Eng Struct 171:170–189. https://doi.org/10.1016/j.engstruct.2018.05.084

    Article  Google Scholar 

  62. Ghorbani MA, Khatibi R, Karimi V (2018) Learning from multiple models using artificial intelligence to improve model prediction accuracies: application to river flows. Water Resour Manag 32(13):4201–4215. https://doi.org/10.1007/s11269-018-2038-x

    Article  Google Scholar 

  63. Wang X, Truijens M, Hou L, Wang Y, Zhou Y (2014) Integrating augmented reality with building information modeling: onsite construction process controlling for lique fi ed natural gas industry. Autom Constr 40:96–105. https://doi.org/10.1016/j.autcon.2013.12.003

    Article  Google Scholar 

  64. Preface (2013) Special issue on the applications of augmented reality in architecture, engineering, and construction. Autom Constr 33:1–2. https://doi.org/10.1016/j.autcon.2013.05.003

    Article  Google Scholar 

  65. Khalek IA, Chalhoub JM, Ayer SK (2019) Augmented reality for identifying maintainability concerns during design. Adv Civ Eng. https://doi.org/10.1155/2019/8547928

    Article  Google Scholar 

  66. Wang X, Love PED, Jeong M, Park C, Sing C, Hou L (2013) A conceptual framework for integrating building information modeling with augmented reality. Autom Constr 34:37–44. https://doi.org/10.1016/j.autcon.2012.10.012

    Article  Google Scholar 

  67. Zaher M, Greenwood D, Marzouk M (2018) Mobile augmented reality applications for construction projects applications. Constr Innov. https://doi.org/10.1108/CI-02-2017-0013

    Article  Google Scholar 

  68. Li X, Yi W, Chi H, Wang X, Chan APC (2018) A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom Constr 86:150–162. https://doi.org/10.1016/j.autcon.2017.11.003

    Article  Google Scholar 

  69. Baek F, Ha I, Kim H (2019) Augmented reality system for facility management using image-based indoor localization. Autom Constr 99:18–26. https://doi.org/10.1016/j.autcon.2018.11.034

    Article  Google Scholar 

  70. Kim H, Lee J, Shin J, Choi J (2018) Visual language approach to representing KBimCode-based Korea building code sentences for automated rule checking. J Comput Des Eng. https://doi.org/10.1016/j.jcde.2018.08.002

    Article  Google Scholar 

  71. Nawari N, Alsaffar A (2017) The role of BIM in simplifying construction permits in kuwait. AEI 2017:855–866

    Google Scholar 

  72. Bukhsh FA, Weigand H (2017) Compliance checking of shipment request by utilizing process mining concepts: an evaluation of Smart Auditing Framework. Int Conf Front Inf Technol Compliance. https://doi.org/10.1109/FIT.2017.00049

    Article  Google Scholar 

  73. Chou J, Ngo N, Chong WK, Gibson GE (2016) Big data analytics and cloud computing for sustainable building energy efficiency. Start-Up Creation. https://doi.org/10.1016/B978-0-08-100546-0.00016-9

    Article  Google Scholar 

  74. Abaker I, Hashem T, Yaqoob I, Badrul N, Mokhtar S, Gani A, Ullah S (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115. https://doi.org/10.1016/j.is.2014.07.006

    Article  Google Scholar 

  75. Ghani NA, Hamid S, Abaker I, Hashem T (2018) Big social media data analytics: a survey. Comput Hum Behav. https://doi.org/10.1016/j.chb.2018.08.039

    Article  Google Scholar 

  76. Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview of blockchain technology: architecture, consensus, and future trends. IEEE Int Cong Big Data. https://doi.org/10.1109/BigDataCongress.2017.85

    Article  Google Scholar 

  77. Nawari NO, Ravindran S (2019) Blockchain and the built environment: potentials and limitations. J Build Eng. https://doi.org/10.1016/j.jobe.2019.100832

    Article  Google Scholar 

  78. Nawari NO, Ravindran S (2019) Blockchain and building information modeling (BIM): review and applications in post-disaster recovery. Buildings 9:149. https://doi.org/10.3390/buildings9060149

    Article  Google Scholar 

  79. Dakhli Z, Lafhaj Z, Mossman A (2019) The potential of blockchain in building construction. Buildings. https://doi.org/10.3390/buildings9040077

    Article  Google Scholar 

  80. Succar B (2009) Building information modelling framework: a research and delivery foundation for industry stakeholders. Autom Constr 18(3):357–375. https://doi.org/10.1016/j.autcon.2008.10.003

    Article  Google Scholar 

  81. Chan DWM, Olawumi TO, Ho AML (2019) Perceived benefits of and barriers to Building Information Modelling (BIM) implementation in construction: the case of Hong Kong. J Build Eng. https://doi.org/10.1016/j.jobe.2019.100764

    Article  Google Scholar 

  82. Jin R, Zhong B, Ma L, Hashemi A, Ding L (2019) Integrating BIM with building performance analysis in project life-cycle. Autom Constr 106:102861. https://doi.org/10.1016/j.autcon.2019.102861

    Article  Google Scholar 

  83. Vilutiene T, Hosseini MR, Pellicer E, Zavadskas EK (2019) Advanced BIM applications in the construction industry. Adv Civ Eng. https://doi.org/10.1155/2019/6356107

    Article  Google Scholar 

  84. Rajabion L, Shaltooki AA, Taghikhah M, Ghasemi A (2019) Healthcare big data processing mechanisms: the role of cloud computing. Int J Inf Manag 49:271–289. https://doi.org/10.1016/j.ijinfomgt.2019.05.017

    Article  Google Scholar 

  85. Radl J, Kaiser J (2019) Benefits of implementation of common data environment (CDE) into construction projects. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/471/2/022021

    Article  Google Scholar 

  86. Parn EA, Edwards D (2019) Cyber threats confronting the digital built environment Common data environment vulnerabilities and block chain deterrence. Eng Constr Archit Manag. https://doi.org/10.1108/ECAM-03-2018-0101

    Article  Google Scholar 

  87. Sik D, Csorba K, Ekler P (2017) Implementation of a geographic information system with big data environment on common data model. In: 8th IEEE international conference on cognitive infocommunications, Debrecen, pp 181–184

  88. Yuan X, Anumba CJ, Parfitt MK (2016) Cyber-physical systems for temporary structure monitoring. Autom Constr 66:1–14. https://doi.org/10.1016/j.autcon.2016.02.005

    Article  Google Scholar 

  89. Akanmu A, Anumba C (2015) Cyber-physical systems integration of building information models and the physical construction. Eng Constr Archit Manag 22(5):516–535. https://doi.org/10.1108/ECAM-07-2014-0097

    Article  Google Scholar 

  90. Antonio D, Garcia L, Anumba CJ (2019) Overview of supporting technologies for cyber-physical systems implementation in the AEC industry. In: ASCE international conference on computing in civil engineering 2019, Atlanta. https://doi.org/10.1061/9780784482438.063

  91. Kan C, Anumba CJ, Messner JI (2017) Potential use of cyber-physical systems (CPS) for planning and operation of mobile cranes on construction sites. ASCE Int Workshop Comput Civ Eng. https://doi.org/10.1061/9780784480830.018

    Article  Google Scholar 

  92. Kan C, Anumba CJ (2019) Digital twins as the next phase of cyber-physical systems in construction digital twins as the next phase of cyber-physical systems in construction. ASCE Int Conf Comput Civ Eng. https://doi.org/10.1061/9780784482438.033

    Article  Google Scholar 

  93. Morley K, Germano J (2019) Priority on cybersecurity. J AWWA. https://doi.org/10.1002/awwa.1246

    Article  Google Scholar 

  94. Habibzadeh H, Nussbaum BH, Anjomshoa F, Kantarci B, Soyata T (2019) A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities. Sustain Cities Soc 50:101660. https://doi.org/10.1016/j.scs.2019.101660

    Article  Google Scholar 

  95. Zhao X, Miers I, Green M, Mitrani-reiser J (2018) Modeling the cybersecurity of hospitals in natural and man-made hazards. Sustain Resil Infrastruct 9689:1–14. https://doi.org/10.1080/23789689.2018.1448666

    Article  Google Scholar 

  96. Daniel KB, Görges D (2019) Advances in service and industrial robotics. In: 28th international conference on robotics in Alpe-Adria-Danube Region, Adria

  97. Xiao F, Fan C (2014) Data mining in building automation system for improving building operational performance. Energy Build 75:109–118. https://doi.org/10.1016/j.enbuild.2014.02.005

    Article  Google Scholar 

  98. Ashouri M, Haghighat F, Fung BCM, Lazrak A, Yoshino H (2018) Development of building energy saving advisory: a data mining approach. Energy Build. https://doi.org/10.1016/j.enbuild.2018.04.052

    Article  Google Scholar 

  99. Bai S, Li M, Kong R, Han S, Li H, Qin L (2019) Data mining approach to construction productivity prediction for cutter suction dredgers. Autom Constr 105(May):102833. https://doi.org/10.1016/j.autcon.2019.102833

    Article  Google Scholar 

  100. Sun C, Zhang R, Sharples S, Han Y, Zhang H (2019) Thermal comfort, occupant control behaviour and performance gap: A study of office buildings in north-east China using data mining. Build Environ 149:305–321. https://doi.org/10.1016/j.buildenv.2018.12.036

    Article  Google Scholar 

  101. Huang H, Chen X, Wang J (2020) Blockchain-based multiple groups data sharing with anonymity and traceability. Sci China 63:1–13. https://doi.org/10.1007/s11432-018-9781-0

    Article  MathSciNet  Google Scholar 

  102. Karaguzel OT, Elshambakey M, Zhu Y, Hong T, Tolone WJ, Wang H (2019) Open computing infrastructure for sharing data analytics to support building energy simulations. J Comput Civ Eng 33(6):1–12. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000857

    Article  Google Scholar 

  103. Cha Y, Choi W, Buyukozturk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32:361–378. https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  104. Kim S, Kang S, Ryu KR, Song G (2019) Real-time occupancy prediction in a large exhibition hall using deep learning approach. Energy Build J 199:216–222. https://doi.org/10.1016/j.enbuild.2019.06.043

    Article  Google Scholar 

  105. Wu J, Cai N, Chen W, Wang H, Wang G (2019) Automatic detection of hardhats worn by construction personnel: a deep learning approach and benchmark dataset. Autom Constr 106:102894. https://doi.org/10.1016/j.autcon.2019.102894

    Article  Google Scholar 

  106. Daneshgaran F, Zacheo L, Di Stasio F, Mondin M (2019) Use of deep learning for automatic detection of cracks in tunnels: prototype-2 developed in the 2017–2018 time period. J Transp Res Rec. https://doi.org/10.1177/0361198119845656

    Article  Google Scholar 

  107. Farinella GM, Farioli G, Battiato S, Leonardi S, Gallo G (2014) Face re-identification for digital signage applications. Int Workshop Video Anal Audience Meas Retail Digital Signage 1:40–52. https://doi.org/10.1007/978-3-319-12811-5

    Article  Google Scholar 

  108. Lee S, Sohn M, Kim H (2015) Implementation of age and gender recognition system for intelligent digital signage. Eighth Int Conf Mach Vis (ICMV 2015) 9875:3–8. https://doi.org/10.1117/12.2228520

    Article  Google Scholar 

  109. Hikita K, Miwa H (2018) Evacuation guidance method by using augmented reality and digital signage. Adv Intell Netw Collab Syst. https://doi.org/10.1007/978-3-319-65636-6

    Article  Google Scholar 

  110. Sethi M, Lijding M, Di Francesco M, Aura T (2015) Flexible management of cloud-connected digital signage. In: 015 IEEE 12th Intl Conf on Ubiquitous intelligence and computing and 2015 IEEE 12th Intl conf on autonomic and trusted computing and 2015 IEEE 15th Intl conf on scalable computing and communications and its associated workshops, Beijing, pp 205–212. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.52

  111. Liau Y, Lee H, Ryu K (2018) Digital Twin concept for smart injection molding. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/324/1/012077

    Article  Google Scholar 

  112. Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in CPS-based production systems. Procedia Manuf 11:939–948. https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  113. Lu R, Brilakis I (2019) Digital twinning of existing reinforced concrete bridges from labelled point clusters. Autom Constr 105:102837. https://doi.org/10.1016/j.autcon.2019.102837

    Article  Google Scholar 

  114. Tao F, Qi Q, Wang L, Nee AYC (2019) Digital twins and cyber: physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering 5(4):653–661. https://doi.org/10.1016/j.eng.2019.01.014

    Article  Google Scholar 

  115. Editorial (2019) Special section on cloud-of-things and edge computing: recent advances and future trends. J Parallel Distrib Comput 133:170–173. https://doi.org/10.1016/j.jpdc.2019.07.004

    Article  Google Scholar 

  116. Hui Y, Su Z, Luan TH, Cai J, Member S (2018) Content in motion: an edge computing based relay scheme for content dissemination in urban vehicular networks. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2018.2873096

    Article  Google Scholar 

  117. Chen L, Englund C (2018) Every second counts: integrating edge computing and service oriented architecture for automatic emergency management. J Adv Transp. https://doi.org/10.1155/2018/7592926

    Article  Google Scholar 

  118. Kochovski P, Stankovski V (2018) Supporting smart construction with dependable edge computing infrastructures and applications. Autom Constr 85:182–192. https://doi.org/10.1016/j.autcon.2017.10.008

    Article  Google Scholar 

  119. Jensen K, Nielsen K, Brunoe T (2016) Application of mass customization in the construction industry. In: IFIP international conference on advances in production management systems (APMS)

  120. Schätz B, Pretschner A, Huber F, Philipps J (2002) Model-based development of embedded systems. In: Advances in object-oriented information systems, OOIS 2002 workshops, pp 298–312

  121. Zagvozda M, Dimter S, Moser V, Zagvozda M, Zagvozda M, Dimter S, Moser V (2019) Application of GIS technology in pavement management systems. Građevinar 71(4):297–304. https://doi.org/10.14256/JCE.1980.2017

    Article  Google Scholar 

  122. Zhu J, Wang X, Chen M, Wu P, Jeong M (2019) Integration of BIM and GIS: iFC geometry transformation to shapefile using enhanced open-source approach. Autom Constr 106:102859. https://doi.org/10.1016/j.autcon.2019.102859

    Article  Google Scholar 

  123. Abbas A, Salloom G, Ruddock F, Alkhaddar R (2019) Modelling Data of an urban drainage design using a geographic information system (GIS) database. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.04.009

    Article  Google Scholar 

  124. Le C, Le T, Jeong HD, Lee E (2019) Geographic information system-based framework for estimating and visualizing unit prices of highway work items. J Constr Eng Manag 145(8):1–12. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001672

    Article  Google Scholar 

  125. Pargman D, Eriksson E, Kirman B, Comber R, Hedman A, Van Den Broeck M (2019) The future of computing and wisdom: insights from human–computer interaction. Futures. https://doi.org/10.1016/j.futures.2019.06.006

    Article  Google Scholar 

  126. Ge L, Kuester F (2014) Integrative simulation environment for conceptual structural analysis. J Comput Civ Eng 29(4):1–10. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000405

    Article  Google Scholar 

  127. Malkawi AM, Srinivasan RS (2005) A new paradigm for human-building interaction: the use of CFD and augmented reality. Autom Constr 14:71–84. https://doi.org/10.1016/j.autcon.2004.08.001

    Article  Google Scholar 

  128. Kalantari S, Poustinchi E, Ahmadi N (2017) Human-computer interaction in the form-making process. In: 22nd international conference ofthe association for computer-aidedarchitectural design research in Asia (CAADRIA), pp 529–538

  129. Neijens B (2017) Improving asset utilization with an asset investment planning and management methodology. Water Pract Technol 12(1):43–47. https://doi.org/10.2166/wpt.2017.005

    Article  Google Scholar 

  130. Rokstad MM, Ugarelli RM, Sægrov S (2016) Improving data collection strategies and infrastructure asset management tool utilisation through cost benefit considerations. Urban Water J. https://doi.org/10.1080/1573062X.2015.1024692

    Article  Google Scholar 

  131. Taleb T, Afolabi I, Bagaa M (2018) Orchestrating 5G network slices to support industrial internet and to shape next-generation smart factories. IEEE Netw. https://doi.org/10.1109/MNET.2018.1800129

    Article  Google Scholar 

  132. Xu Z, Raymond KK, Dehgantanha A, Parizi R, Hammoudeh M (2020) Cyber security intelligence and analytics. Adv Intell Syst Comput. https://doi.org/10.1007/978-3-030-15235-2

    Article  Google Scholar 

  133. Urbina M, Acosta T (2019) Smart sensor: soC architecture for the industrial internet of things. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2019.2908264

    Article  Google Scholar 

  134. Arnold C, Voigt K (2018) Determinants of industrial internet of things adoption in German manufacturing companies. Int J Innov Technol Manag. https://doi.org/10.1142/S021987701950038X

    Article  Google Scholar 

  135. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  136. Tang S, Shelden DR, Eastman CM, Pishdad-bozorgi P, Gao X (2019) A review of building information modeling (BIM) and the internet of things (IoT) devices integration: present status and future trends. Autom Constr 101:127–139. https://doi.org/10.1016/j.autcon.2019.01.020

    Article  Google Scholar 

  137. Louis J, Dunston PS (2018) Integrating IoT into operational work fl ows for real-time and automated decision-making in repetitive construction operations. Autom Constr 94:317–327. https://doi.org/10.1016/j.autcon.2018.07.005

    Article  Google Scholar 

  138. Kifokeris D, Xenidis Y (2019) Risk source-based constructability appraisal using supervised machine learning. Autom Constr 104:341–359. https://doi.org/10.1016/j.autcon.2019.04.012

    Article  Google Scholar 

  139. Potočnik P, Vidrih B, Kitanovski A, Govekar E (2019) Neural network, ARX, and extreme learning machine models for the short-term prediction of temperature in buildings. Build Simul 12(6):1077–1093. https://doi.org/10.1007/s12273-019-0548-y

    Article  Google Scholar 

  140. Luo H, German-Paal S (2019) A locally weighted machine learning model for generalized. Comput-Aided Civ Infrastruct Eng. https://doi.org/10.1111/mice.12456

    Article  Google Scholar 

  141. Tixier AJ, Hallowell MR, Rajagopalan B, Bowman D (2016) Application of machine learning to construction injury prediction. Autom Constr 69:102–114. https://doi.org/10.1016/j.autcon.2016.05.016

    Article  Google Scholar 

  142. Marchesi M, Matt DT (2017) Design for mass customization: rethinking prefabricated housing using axiomatic design. J Archit Eng 23(3):1–20. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000260

    Article  Google Scholar 

  143. Aditra RF, Widyowijatnoko A (2016) Combination of mass customisation and conventional construction. In: 21st international conference of the association for computer-aided architectural design research in Asia CAADRIA 2016, pp 777–786

  144. Lee XS, Khamidi MF, Kuppusamy S, Tuck C (2017) Client-oriented building mass customization (CoBMC). IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/291/1/012011

    Article  Google Scholar 

  145. Paoletti I (2017) Mass customization with additive manufacturing: new perspectives for multi performative building components in architecture. Procedia Eng 180:1150–1159. https://doi.org/10.1016/j.proeng.2017.04.275

    Article  Google Scholar 

  146. Brilakis I (2017) Mixed reality constructs a new frontier for maintaining the built environment. Civ Eng 170:53. https://doi.org/10.1680/jcien.2017.170.2.53

    Article  Google Scholar 

  147. Dunston PS, Wang X (2005) Mixed reality-based visualization interfaces for architecture, engineering, and construction industry. J Constr Eng Manag 131:1301–1310

    Article  Google Scholar 

  148. Wu W, Issa RRA (2014) BIM execution planning in green building projects: leed as a use case. J Manag Eng 31(1):A4014007. https://doi.org/10.1061/(asce)me.1943-5479.0000314

    Article  Google Scholar 

  149. Chen Y, Kamara JM (2011) A framework for using mobile computing for information management on construction sites. Autom Constr 20(7):776–788. https://doi.org/10.1016/j.autcon.2011.01.002

    Article  Google Scholar 

  150. Kim C, Park T, Lim H, Kim H (2013) On-site construction management using mobile computing technology. Autom Constr. https://doi.org/10.1016/j.autcon.2013.05.027

    Article  Google Scholar 

  151. Zhang H, Chi S, Yang J, Moon S (2013) Development of a safety inspection framework on construction sites using mobile computing. J Manag Eng. https://doi.org/10.1061/(ASCE)ME

    Article  Google Scholar 

  152. Isaac S, Bock T, Stoliar Y (2016) A methodology for the optimal modularization of building design. Autom Constr 65:116–124. https://doi.org/10.1016/j.autcon.2015.12.017

    Article  Google Scholar 

  153. Sharafi P, Rashidi M, Samali B, Ronagh H, Mortazavi M (2018) Identification of factors and decision analysis of the level of modularization in building construction. J Archit Eng 24(2):1–12. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000313

    Article  Google Scholar 

  154. Tserng HP, Yin YL, Jaselskis EJ, Hung W, Lin Y (2011) Modularization and assembly algorithm for efficient MEP construction. Autom Constr 20:837–863. https://doi.org/10.1016/j.autcon.2011.03.002

    Article  Google Scholar 

  155. Xiong X, Adan A, Akinci B, Huber D (2013) Automatic creation of semantically rich 3D building models from laser scanner data. Autom Constr 31:325–337. https://doi.org/10.1016/j.autcon.2012.10.006

    Article  Google Scholar 

  156. Javadnejad F, Simpson C, Gillins D, Claxton Olsen MJ (2017) An assessment of UAS-based photogrammetry for civil integrated management (CIM) modeling of pipes. Pipelines 2017:112–123

    Google Scholar 

  157. Braun A, Borrmann A (2019) Combining inverse photogrammetry and BIM for automated labeling of construction site images for machine learning. Autom Constr. https://doi.org/10.1016/j.autcon.2019.102879

    Article  Google Scholar 

  158. García-Luna R, Senent S, Jurado-Piña R, Jimenez R (2019) Structure from Motion photogrammetry to characterize underground rock masses: experiences from two real tunnels. Tunn Undergr Space Technol 83:262–273. https://doi.org/10.1016/j.tust.2018.09.026

    Article  Google Scholar 

  159. Napolitano R, Glisic B (2019) Methodology for diagnosing crack patterns in masonry structures using photogrammetry and distinct element modeling. Eng Struct 181:519–528. https://doi.org/10.1016/j.engstruct.2018.12.036

    Article  Google Scholar 

  160. Reinoso J, Goncalves J, Pereira C, Bleninger T (2018) Cartography for civil engineering projects: photogrammetry supported by unmanned aerial vehicles. Iran J Sci Technol Trans Civ Eng 42:91–96. https://doi.org/10.1007/s40996-017-0076-x

    Article  Google Scholar 

  161. Nowogonska B (2019) Diagnoses in the aging process of residential buildings constructed using traditional technology. Buildings. https://doi.org/10.3390/buildings9050126

    Article  Google Scholar 

  162. Slika W, Saad G (2016) An Ensemble Kalman Filter approach for service life prediction of reinforced concrete structures subject to chloride-induced corrosion. Constr Build Mater 115:132–142. https://doi.org/10.1016/j.conbuildmat.2016.04.025

    Article  Google Scholar 

  163. Miao F, Dong S, Liang H, Wang X (2018) Manufacture and prefabrication practice on a test model of a novel six-bar tetrahedral cylindrical lattice shell. Adv Struct Eng. https://doi.org/10.1177/1369433218784040

    Article  Google Scholar 

  164. Li X, Wu P, Yue T (2019) Integrating building information modeling and prefabrication housing production. Autom Constr 100:46–60. https://doi.org/10.1016/j.autcon.2018.12.024

    Article  Google Scholar 

  165. Jang S (2018) Comparative analysis of multi-trade prefabrication construction methods. J Asian Archit Build Eng. https://doi.org/10.3130/jaabe.17.503

    Article  Google Scholar 

  166. Jang S, Lee G (2018) Process, productivity, and economic analyses of BIM: based multi-trade prefabrication—a case study. Autom Constr 89:86–98. https://doi.org/10.1016/j.autcon.2017.12.035

    Article  Google Scholar 

  167. Navarro-Rubio J, Pineda P, García-Martínez A (2018) Sustainability, prefabrication and building optimization under different durability and re-using scenarios: potential of dry precast structural connections. Sustain Cities Soc 44:614–628. https://doi.org/10.1016/j.scs.2018.10.045

    Article  Google Scholar 

  168. Sullivan DTJO, Keane MM, Kelliher D, Hitchcock RJ (2004) Improving building operation by tracking performance metrics throughout the building lifecycle (BLC). Energy Build 36:1075–1090. https://doi.org/10.1016/j.enbuild.2004.03.003

    Article  Google Scholar 

  169. Shin HM, Lee HM, Oh SJ, Chen JH (2011) Procedia engineering analysis and design of reinforced concrete bridge column based on BIM. Procedia Eng 14:2160–2163. https://doi.org/10.1016/j.proeng.2011.07.271

    Article  Google Scholar 

  170. Vanlande R, Nicolle C, Cruz C (2008) IFC and building lifecycle management. Autom Constr J 18:70–78. https://doi.org/10.1016/j.autcon.2008.05.001

    Article  Google Scholar 

  171. Jaselskis EJ, El-misalami T (2003) Implementing radio frequency identification in the construction process. J Constr Eng Manag 129:680–688

    Article  Google Scholar 

  172. Xue F, Chen K, Lu W, Niu Y, Huang GQ (2018) Linking radio-frequency identification to Building Information Modeling: status quo, development trajectory and guidelines for practitioners. Autom Constr 93:241–251. https://doi.org/10.1016/j.autcon.2018.05.023

    Article  Google Scholar 

  173. Ma G, Jiang J, Shang S (2019) Visualization of component status information of prefabricated concrete building based on building information modeling and radio frequency identification: a case study in China. Adv Civ Eng. https://doi.org/10.1155/2019/6870507

    Article  Google Scholar 

  174. Judd J, Schmidt R, Danforth M, Branscomb J, Jung M (2018) Radio-frequency identification triggering system for structural health monitoring of highway bridges. Exp Vib Anal Civ Struct. https://doi.org/10.1007/978-3-319-67443-8_9

    Article  Google Scholar 

  175. Zhang Y, Bai L (2015) Rapid structural condition assessment using radio frequency identification (RFID) based wireless strain sensor. Autom Constr 54:1–11. https://doi.org/10.1016/j.autcon.2015.02.013

    Article  Google Scholar 

  176. Ko C, Pan N, Chiou C (2013) Maintenance, management, life-cycle design and performance web-based radio frequency identification facility management systems. Struct Infrastruct Eng 9(5):465–480. https://doi.org/10.1080/15732479.2010.546804

    Article  Google Scholar 

  177. Charron N, Mclaughlin E, Phillips S, Goorts K, Narasimhan S, Waslander SL (2019) Automated bridge inspection using mobile ground robotics. J Struct Eng 145(11):1–18. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002404

    Article  Google Scholar 

  178. Mantha BRK, Menassa CC, Kamat VR (2018) Robotic data collection and simulation for evaluation of building retro fit performance. Autom Constr 92:88–102. https://doi.org/10.1016/j.autcon.2018.03.026

    Article  Google Scholar 

  179. Davtalab O, Kazemian A, Khoshnevis B (2018) Perspectives on a BIM-integrated software platform for robotic construction through Contour Crafting. Autom Constr 89:13–23. https://doi.org/10.1016/j.autcon.2018.01.006

    Article  Google Scholar 

  180. Tavares P, Costa CM, Rocha L, Malaca P, Costa P, Moreira AP, Veiga G (2019) Collaborative welding system using BIM for robotic reprogramming and spatial augmented reality. Autom Constr 106:102825. https://doi.org/10.1016/j.autcon.2019.04.020

    Article  Google Scholar 

  181. Gooding L (2017) Enabling a self-sufficient energy efficient retrofit services sector future: a qualitative study. Energy Build. https://doi.org/10.1016/j.enbuild.2017.09.072

    Article  Google Scholar 

  182. Aguacil S, Lufkin S, Rey E (2019) Active surfaces selection method for building-integrated photovoltaics (BIPV) in renovation projects based on self-consumption and self-sufficiency. Energy Build 193:15–28. https://doi.org/10.1016/j.enbuild.2019.03.035

    Article  Google Scholar 

  183. Liu S, Schiavon S, Das HP, Jin M, Spanos CJ (2019) Personal thermal comfort models with wearable sensors. Build Environ 162:106281. https://doi.org/10.1016/j.buildenv.2019.106281

    Article  Google Scholar 

  184. Barrias A, Casas JR, Villalba S (2019) Fatigue performance of distributed optical fiber sensors in reinforced concrete elements. Constr Build Mater J 218:214–223. https://doi.org/10.1016/j.conbuildmat.2019.05.072

    Article  Google Scholar 

  185. Taheri S (2019) A review on five key sensors for monitoring of concrete structures. Constr Build Mater 204:492–509. https://doi.org/10.1016/j.conbuildmat.2019.01.172

    Article  Google Scholar 

  186. Muroni A, Gaetani I, Hoes P, Hensen JLM (2012) Occupant behavior in identical residential buildings: a case study for occupancy profiles extraction and application to building performance simulation. Build Simul 12(6):1047–1061

    Article  Google Scholar 

  187. Baochen F, Chunchang Z, Xi H (2019) Simulation of nonlinear behavior of beam structures based on discrete element method. Int J Steel Struct. https://doi.org/10.1007/s13296-019-00228-0

    Article  Google Scholar 

  188. Cuerda E, Guerra-Santin O, Sendra JJ (2019) Comparing the impact of presence patterns on energy demand in residential buildings using measured data and simulation models. Build Simul 12(6):985–998. https://doi.org/10.1007/s12273-019-0539-z

    Article  Google Scholar 

  189. Wang X, Kim RE, Kwon O, Yeo I, Ahn J (2019) Continuous real-time hybrid simulation method for structures subject to fire. J Struct Eng 145(12):1–12. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002436

    Article  Google Scholar 

  190. Azhar S, Asce AM, Riaz Z, Robinson D (2019) Integration of social media in day-to-day operations of construction firms. J Manag Eng 35(1):1–7. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000660

    Article  Google Scholar 

  191. Duryan M, Smyth H (2018) Service design and knowledge management in the construction supply chain for an infrastructure programme. Built Environ Proj Asset Manag. https://doi.org/10.1108/BEPAM-04-2018-0060

    Article  Google Scholar 

  192. Chen P, Nguyen TC (2019) A BIM-WMS integrated decision support tool for supply chain management in construction. Autom Constr 98:289–301. https://doi.org/10.1016/j.autcon.2018.11.019

    Article  Google Scholar 

  193. Shahbaz MS, Chandio AF, Oad M, Ahmed A, Ullah R (2018) Stakeholders management approaches in construction supply chain: a new perspective of stakeholders theory. Int J Sustain Constr Eng Technol 9(2):16–26. https://doi.org/10.30880/ijscet.2018.09.02.002

    Article  Google Scholar 

  194. Deng Y, Gan VJL, Das M, Cheng JCP, Anumba C, Asce F (2019) Integrating 4D BIM and GIS for construction supply chain management. J Constr Eng Manag 145(4):1–14. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001633

    Article  Google Scholar 

  195. Fernando P, Ruiz A, Hernán L, Lara M, Manuel A, Pereira DJ (2017) Standardization of policies of the use of distance aircraft systems and aircraft systems (RPAS/UAS) in ecuador. Adv Intell Syst Comput. https://doi.org/10.1007/978-3-319-56541-5

    Article  Google Scholar 

  196. Golizadeh H, Hosseini MR, Edwards DJ, Abrishami S, Taghavi N, Banihashemi S (2019) Barriers to adoption of RPAs on construction projects: a task: technology fit perspective. Constr Innov. https://doi.org/10.1108/CI-09-2018-0074

    Article  Google Scholar 

  197. Trhan O (2017) The creation of space vector models of buildings from RPAS photogrammetry data. Slovak J Civ Eng 25(2):7–14. https://doi.org/10.1515/sjce-2017-0007

    Article  Google Scholar 

  198. De Klerk R, Mendes A, Pires D, Pinto J (2019) Usability studies on building early stage architectural models in virtual reality. Autom Constr 103:104–116. https://doi.org/10.1016/j.autcon.2019.03.009

    Article  Google Scholar 

  199. Wolfartsberger J (2019) Analyzing the potential of Virtual Reality for engineering design review. Autom Constr 104:27–37. https://doi.org/10.1016/j.autcon.2019.03.018

    Article  Google Scholar 

  200. Wu W, Hartless J, Tesei A, Gunji V, Ayer S, London J (2019) Design Assessment in virtual and mixed reality environments: comparison of novices and experts. J Constr Eng Manag. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001683

    Article  Google Scholar 

  201. Hwang H, Baek J, Kim J, Kim C (2019) Prediction of bond performance of tension lap splices using artificial neural networks. Eng Struct 198(May):109535. https://doi.org/10.1016/j.engstruct.2019.109535

    Article  Google Scholar 

  202. Fan G, Li J (2019) Lost data recovery for structural health monitoring based on convolutional neural networks. Struct Control Health Monit. https://doi.org/10.1002/stc.2433

    Article  Google Scholar 

  203. Alipour M, Harris DK, Miller GR (2019) Robust pixel-level crack detection using deep fully convolutional neural networks. J Comput Civ Eng 33(6):1–14. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000854

    Article  Google Scholar 

  204. Cadini F, Giglio M (2019) Particle filtering-based adaptive training of neural networks for real-time structural damage diagnosis and prognosis. Struct Control Health Monit 2451:1–19. https://doi.org/10.1002/stc.2451

    Article  Google Scholar 

  205. Nikose TJ, Sonparote R (2019) Dynamic wind response of tall buildings using artificial neural network. Struct Des Tall Spec Build. https://doi.org/10.1002/tal.1657

    Article  Google Scholar 

  206. Liu M, Han S, Lee S (2017) Potential of convolutional neural network-based 2D human pose estimation for on-site activity analysis of construction workers. Comput Civ Eng 2017:141–149

    Google Scholar 

Download references

Acknowledgements

The first author, Felipe Muñoz-La Rivera, acknowledges CONICYT for its economic support, being beneficiary of a pre-doctoral Grant (Reference Number CONICYT - PCHA/International Doctorate/2019-72200306). The authors also acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D (CEX2018-000797-S)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Muñoz-La Rivera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-La Rivera, F., Mora-Serrano, J., Valero, I. et al. Methodological-Technological Framework for Construction 4.0. Arch Computat Methods Eng 28, 689–711 (2021). https://doi.org/10.1007/s11831-020-09455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09455-9

Navigation