Skip to main content
Log in

Dissipative Particle Dynamics (DPD): An Overview and Recent Developments

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Dissipative particle dynamics (DPD) is a mesoscale particle method that bridges the gap between microscopic and macroscopic simulations. It can be regarded as a coarse-grained molecular dynamics method suitable for larger time and length scales. It has been successfully applied to different areas of interests, especially in modeling the hydrodynamic behavior of complex fluids in mesoscale. This paper presents an overview on DPD including the methodology, formulation, implementation procedure and some related numerical aspects. The paper also reviews the major applications of the DPD method, especially in modeling (1) micro drop dynamics, (2) multiphase flows in micro-channels and fracture networks, (3) movement and suspension of macromolecules in micro channels and (4) movement and deformation of single cells. The paper ends with some concluding remarks summarizing the major features and future possible development of this unique mesoscale modeling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Gardner JW, Varadan VK, Awadelkarim OO (2001) Microsensors, mems, and smart devices. Wiley, New York

    Book  Google Scholar 

  2. Hsu T-R (2008) Mems & microsystems: design, manufacture, and nanoscale engineering. Wiley, New York

    Google Scholar 

  3. Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (mems) and fluid flows. Annu Rev Fluid Mech 30(1):579–612

    Article  Google Scholar 

  4. Karniadakis G, Be k k A, Aluru NR (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

  5. McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2(1):289–313

    Article  Google Scholar 

  6. Smith DE, Babcock HP, Chu S (1999) Single-polymer dynamics in steady shear flow. Science 283(5408):1724–1727

    Article  Google Scholar 

  7. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struc Biol 10(3):279–285

    Article  Google Scholar 

  8. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265(5178):1599–1600

    Article  Google Scholar 

  9. Moeendarbary E, Ng TY, Zangeneh M (2009) Dissipative particle dynamics: introduction, methodology and complex fluid applications—a review. Int J Appl Mech 1(04):737–763

    Article  Google Scholar 

  10. Curtin WA, Miller RE (2003) Atomistic/continuum coupling in computational materials science. Model Simul Mater Sci 11(3):R33

    Article  Google Scholar 

  11. Koplik J, Banavar JR (1995) Continuum deductions from molecular hydrodynamics. Annu Rev Fluid Mech 27(1):257–292

    Article  Google Scholar 

  12. Zienkiewicz OC, Taylor RL (1977) The finite element method. McGraw-hill, London

    MATH  Google Scholar 

  13. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover, New York

    Google Scholar 

  14. Liu GR, Quek SS (2003) Finite element method: a practical course: a practical course. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  15. Liu GR, Trung NT (2010) Smoothed finite element methods. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  17. Anderson JD (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill, New York

    Google Scholar 

  18. Benson DJ (1992) Computational methods in lagrangian and eulerian hydrocodes. Comput Method Appl Mech Eng 99(2–3):235–394

    Article  MATH  MathSciNet  Google Scholar 

  19. Chow CY (1979) An introduction to computational fluid mechanics. Wiley, New York

    MATH  Google Scholar 

  20. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80

    Article  MathSciNet  Google Scholar 

  21. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Method Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  22. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    Book  MATH  Google Scholar 

  23. Liu GR (2002) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Onate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  25. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  26. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego

    MATH  Google Scholar 

  28. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558

    Article  Google Scholar 

  29. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251

    Article  Google Scholar 

  30. Voter AF (2007) Introduction to the kinetic Monte Carlo method. In: Radiation effects in solids. Springer, New York, pp 1–23

  31. Pan LS, Liu GR, Lam KY (1999) Determination of slip coefficient for rarefied gas flows using direct simulation monte carlo. J Micromech Microeng 9(1):89

    Article  Google Scholar 

  32. Pan LS, Liu GR, Khoo BC, Song B (2000) A modified direct simulation monte carlo method for low-speed microflows. J Micromech Microeng 10(1):21

    Article  Google Scholar 

  33. Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 2. Numerical results. J Fluid Mech 271(1):311–339

    Article  MathSciNet  MATH  Google Scholar 

  34. He XY, Luo LS (1997) Theory of the lattice Boltzmann method: from the boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56(6):6811

    Article  Google Scholar 

  35. He XY, Luo LS (1997) A priori derivation of the lattice Boltzmann equation. Phys Rev E 55(6):R6333

    Article  Google Scholar 

  36. Luo LS (1998) Unified theory of lattice Boltzmann models for nonideal gases. Phys Rev Lett 81(8):1618

    Article  Google Scholar 

  37. Chen SY, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  38. Pomeau BHY, Frisch U (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505

    Article  Google Scholar 

  39. McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332

    Article  Google Scholar 

  40. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  41. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  42. Monaghan JJ (1992) Smooth particle hydrodynamics. Annu Rev Astron Astr 30:543–574

    Article  MathSciNet  Google Scholar 

  43. Cleary PW, Prakash M, Ha J, Stokes N, Scott C (2007) Smooth particle hydrodynamics: status and future potential. Prog Comput Fluid Dy 7(2–4):70–90

    Article  MATH  MathSciNet  Google Scholar 

  44. Xu ZJ, Meakin P, Tartakovsky AM (2009) Diffuse-interface model for smoothed particle hydrodynamics. Phys Rev E 79(3):036702

    Article  Google Scholar 

  45. Ren J, Ouyang J, Yang B, Jiang T, Mai H (2011) Simulation of container filling process with two inlets by improved smoothed particle hydrodynamics (sph) method. Int J Comput Fluid Dyn 25(7):365–386

    Article  MATH  MathSciNet  Google Scholar 

  46. Hu X, Adams N (2006) A multi-phase sph method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861

    Article  MATH  MathSciNet  Google Scholar 

  47. Tartakovsky AM, Meakin P (2005) A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional rayleigh taylor instability. J Comput Phys 207(2):610–624

    Article  MATH  MathSciNet  Google Scholar 

  48. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472

    Article  MathSciNet  MATH  Google Scholar 

  49. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  51. Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–487

    Article  MathSciNet  MATH  Google Scholar 

  52. Sukop MC, Thorne DT Jr (2007) Lattice boltzmann modeling: an introduction for geoscientists and engineers. Springer, New York

    Google Scholar 

  53. Guo ZL, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, Singapore

    Book  MATH  Google Scholar 

  54. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice boltzmann models: an introduction. Springer, New York

    Book  MATH  Google Scholar 

  55. Hoogerbrugge PJ, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155

    Article  Google Scholar 

  56. Yan K, Chen YZ, Han JY, Liu GR, Wang JS, Hadjiconstantinou NG (2012) Dissipative particle dynamics simulation of field-dependent DNA mobility in nanoslits. Microfluid Nanofluid 12(1–4):157–163

    Article  Google Scholar 

  57. Duong-Hong D, Wang JS, Liu GR, Chen YZ, Han JY, Hadjiconstantinou NG (2008) Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluid 4(3):219–225

    Article  Google Scholar 

  58. Wang R, Wang JS, Liu GR, Han JY, Chen YZ (2009) Simulation of DNA electrophoresis in systems of large number of solvent particles by coarsegrained hybrid molecular dynamics approach. J Comput Chem 30(4):505–513

    Article  MATH  Google Scholar 

  59. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Article  Google Scholar 

  60. Marsh C (1998) Theoretical aspects of dissipative particle dynamics. University of Oxford, Oxford

    Google Scholar 

  61. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423

    Article  Google Scholar 

  62. Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115:5015

    Article  Google Scholar 

  63. Español P (1997) Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhys Lett 39(6):605

    Article  Google Scholar 

  64. Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):26705

    Article  Google Scholar 

  65. Bock H, Gubbins KE, Klapp SHL (2007) Coarse graining of nonbonded degrees of freedom. Phys Rev Lett 98(26):267801. doi:10.1103/PhysRevLett.98.267801

    Article  Google Scholar 

  66. Knotts TA IV, Rathore N, Schwartz DC, de Pablo JJ (2007) A coarse grain model for DNA. J Chem Phys 126(8):084901

    Article  Google Scholar 

  67. Nielsen SO, Lopez CF, Srinivas G, Klein ML (2004) Coarse grain models and the computer simulation of soft materials. J Phys Condens Mat 16(15):R481

    Article  Google Scholar 

  68. Fan XJ, Phan-Thien N, Chen S, Wu XH, Ng TY (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18(6):063102. doi:10.1063/1.2206595

    Article  MATH  Google Scholar 

  69. Pagonabarraga I, Hagen MHJ, Frenkel D (1998) Self-consistent dissipative particle dynamics algorithm. Europhys Lett 42(4):377–382

    Article  Google Scholar 

  70. Irving J, Kirkwood JG (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys 18:817

    Article  MathSciNet  Google Scholar 

  71. Liu MB, Meakin P, Huang H (2006) Dissipative particle dynamics with attractive and repulsive particle-particle interactions. Phys Fluids 18(1):017101. doi:10.1063/1.2163366

    Article  MathSciNet  MATH  Google Scholar 

  72. Liu MB, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction. J Comput Phys 222(1):110–130

    Article  MATH  Google Scholar 

  73. Revenga M, Zuniga I, Espanol P, Pagonabarraga I (1998) Boundary models in dpd. Int J Mod Phys C 9(08):1319–1328

    Article  Google Scholar 

  74. Altenhoff AM, Walther JH, Koumoutsakos P (2007) A stochastic boundary forcing for dissipative particle dynamics. J Comput Phys 225:1125–1136. doi:10.1016/j.jcp.2007.01.015

    Article  MATH  MathSciNet  Google Scholar 

  75. Fan XJ, Phan-Thien N, Yong NT, Wu X, Xu D (2003) Microchannel flow of a macromolecular suspension. Phys Fluids 15(1):11–21. doi:10.1063/1.1522750

    Article  MATH  Google Scholar 

  76. Liu MB, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of pore-scale flow. Water Resour Res 43:W04411. doi:10.1029/2006WR004856

    Google Scholar 

  77. Warren P (2003) Vapour–liquid coexistence in many-body dissipative particle dynamics. arXiv preprint cond-mat/0306027

  78. Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155(2):263–284

    Article  MATH  MathSciNet  Google Scholar 

  79. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62(4):4968–4975

    Article  Google Scholar 

  80. Lebowitz JL, Penrose O (1966) Rigorous treatment of the van der waalsmaxwell theory of the liquidvapor transition. J Math Phys 7:98

    Article  MATH  MathSciNet  Google Scholar 

  81. Larson R, Perkins T, Smith D, Chu S (1999) The hydrodynamics of a DNA molecule in a flow field. In: Flexible polymer chains in elongational flow. Springer, New York, pp 259–282

  82. Vologodskii A (1994) DNA extension under the action of an external force. Macromolecules 27(20):5623–5625

    Article  Google Scholar 

  83. Warren PB (1998) Dissipative particle dynamics: dynamic aspects of colloids and interfaces. Curr Opin Colloid Interface Sci 3(6):620–624

    Article  Google Scholar 

  84. Koelman MVA, Hoogerbrugge PJ (1993) Dynamics simulation of hard-sphere suspensions under steady shear. Europhys Lett 21(3):363–368

    Article  Google Scholar 

  85. Groot RD (2000) Mesoscopic simulation of polymer-surfactant aggregation. Langmuir 16(19):7493–7502

    Article  Google Scholar 

  86. Schlijper AG, Hoogerbrugge PJ, Manke CW (1995) Computer simulation of dilute polymer solutions with the dissipative particle dynamics method. J Rheol 39:567

    Article  Google Scholar 

  87. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736

    Article  Google Scholar 

  88. Pan H, Ng T, Li H, Moeendarbary E (2010) Dissipative particle dynamics simulation of entropic trapping for DNA separation. Sens Actuat A Phys 157(2):328–335

    Article  Google Scholar 

  89. Karniadakis GE, Beskok A, Aluru A (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

  90. Clark AT, Lal M, Ruddock JN, Warren PB (2000) Mesoscopic simulation of drops in gravitational and shear fields. Langmuir 16(15):6342–6350

    Article  Google Scholar 

  91. Li Z, Hu GH, Wang ZL, Ma YB, Zhou ZW (2013) Three dimensional flow structures in a moving droplet on substrate: a dissipative particle dynamics study. Phys Fluids 25:072103

    Article  Google Scholar 

  92. Zhang MK, Chen S, Shang Z (2012) Numerical simulation of a droplet motion in a grooved microchannel. Acta Phys Sin 61(3):034701. doi:10.7498/aps.61.034701

  93. Merabia S, Pagonabarraga I (2006) A mesoscopic model for (de) wetting. Eur Phys J E 20(2):209–214

    Article  Google Scholar 

  94. Tiwari A, Abraham J (2006) Dissipative-particle-dynamics model for two-phase flows. Phys Rev E 74(5):056701

    Article  MathSciNet  Google Scholar 

  95. Boistelle R, Astier J (1988) Crystallization mechanisms in solution. J Cryst Growth 90(1):14–30

    Article  Google Scholar 

  96. De Gennes P-G (1985) Wetting: statics and dynamics. Rev Mod Phys 57(3):827

    Article  Google Scholar 

  97. Bracke M, De Voeght F, Joos P (1989) The kinetics of wetting: the dynamic contact angle. In: Trends in colloid and interface science iii. Springer, New York, pp 142–149

  98. Nativ R, Adar E, Dahan O, Geyh M (1995) Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour Res 31(2):253–261

    Article  Google Scholar 

  99. Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35(4):461–490

    Article  Google Scholar 

  100. Dragila MI, Weisbrod N (2004) Fluid motion through an unsaturated fracture junction. Water Resour Res 40(2):W02403

    Article  Google Scholar 

  101. Kwicklis EM, Healy RW (1993) Numerical investigation of steady liquid water flow in a variably saturated fracture network. Water Resour Res 29(12):4091–4102

    Article  Google Scholar 

  102. Persoff P, Pruess K (1995) Twophase flow visualization and relative permeability measurement in natural roughwalled rock fractures. Water Resour Res 31(5):1175–1186

    Article  Google Scholar 

  103. Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37

    Article  MATH  Google Scholar 

  104. Harlow FH (1964) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3:319–343

    Google Scholar 

  105. Hirt CW, Nichols BD (1981) Volume of fluid (vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  MATH  Google Scholar 

  106. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  107. Liu MB, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks. Phys Fluids 19(3):033302. doi:10.1063/1.2717182

    Article  MATH  Google Scholar 

  108. Cupelli C, Henrich B, Glatzel T, Zengerle R, Moseler M, Santer M (2008) Dynamic capillary wetting studied with dissipative particle dynamics. N J Phys 10(4):043009

    Article  Google Scholar 

  109. Huang H, Meakin P, Liu M, McCreery GE (2005) Modeling of multiphase fluid motion in fracture intersections and fracture networks. Geophys Res Lett 32(19):L19402. doi:10.1029/2005GL023899s

  110. Chun K, Hashiguchi G, Fujita H (1999) Fabrication of array of hollow microcapillaries used for injection of genetic materials into animal/plant cells. Jpn J Appl Phys 38:279

    Article  Google Scholar 

  111. Brazzle JD, Mohanty SK, Frazier AB (1999) Hollow metallic micromachined needles with multiple output ports. In: Symposium on micromachining and microfabrication, international society for optics and photonics

  112. Lin L, Pisano AP (1999) Silicon-processed microneedles. J Microelectmech Syst 8(1):78–84

    Article  Google Scholar 

  113. Chu S (1991) Laser manipulation of atoms and particles. Science 253(5022):861–866

    Article  Google Scholar 

  114. Perkins TT, Quake SR, Smith DE, Chu S (1994) Relaxation of a single DNA molecule observed by optical microscopy. Science 264(5160):822–825 (AAAS-Weekly Paper Edition-including Guide to Scientific Information)

    Article  Google Scholar 

  115. Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268:83–83

    Article  Google Scholar 

  116. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016–2021

    Article  Google Scholar 

  117. Smith DE, Chu S (1998) Response of flexible polymers to a sudden elongational flow. Science 281(5381):1335–1340

    Article  Google Scholar 

  118. Shrewsbury PJ, Muller SJ, Liepmann D (2001) Effect of flow on complex biological macromolecules in microfluidic devices. Biomed Microdevices 3(3):225–238

    Article  Google Scholar 

  119. Cheon M, Chang I, Koplik J, Banavar J (2002) Chain molecule deformation in a uniform flow—a computer experiment. Europhys Lett 58(2):215

    Article  Google Scholar 

  120. Tessier F, Labrie J, Slater GW (2002) Electrophoretic separation of long polyelectrolytes in submolecular-size constrictions: a Monte Carlo study. Macromolecules 35(12):4791–4800

    Article  Google Scholar 

  121. Northrup SH, Allison SA, McCammon JA (1984) Brownian dynamics simulation of diffusioninfluenced bimolecular reactions. J Chem Phys 80:1517

    Article  Google Scholar 

  122. Hur JS, Shaqfeh ES, Larson RG (2000) Brownian dynamics simulations of single DNA molecules in shear flow. J Rheol 44:713

    Article  Google Scholar 

  123. Doyle PS, Shaqfeh ES (1998) Dynamic simulation of freely-draining, flexible bead-rod chains: start-up of extensional and shear flow. J Non-Newton Fluid 76(1):43–78

    Article  MATH  Google Scholar 

  124. Doyle PS, Shaqfeh ES, Gast AP (1997) Dynamic simulation of freely draining flexible polymers in steady linear flows. J Fluid Mech 334:251–291

    Article  MATH  Google Scholar 

  125. Doyle PS, Shaqfeh ES, McKinley GH, Spiegelberg SH (1998) Relaxation of dilute polymer solutions following extensional flow. J Non-Newton Fluid 76(1):79–110

    Article  MATH  Google Scholar 

  126. Kong Y, Manke C, Madden W, Schlijper A (1997) Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. J Chem Phys 107:592

    Article  Google Scholar 

  127. Spenley N (2000) Scaling laws for polymers in dissipative particle dynamics. Europhys Lett 49(4):534

    Article  Google Scholar 

  128. Symeonidis V, Karniadakis GE, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: Scaling laws and shearing response compared to DNA experiments. Phys Rev Lett 95(7):076001

    Article  Google Scholar 

  129. Wijmans C, Smit B (2002) Simulating tethered polymer layers in shear flow with the dissipative particle dynamics technique. Macromolecules 35(18):7138–7148

    Article  Google Scholar 

  130. Symeonidis V, Karniadakis G, Caswell B (2005) Simulation of \(\lambda \)-phage DNA in microchannels using dissipative particle dynamics. Tech Sci 53(4):395–403

  131. Chen S, Phan-Thien N, Fan XJ, Khoo BC (2004) Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. J Non-Newton Fluid 118(1):65–81

    Article  MATH  Google Scholar 

  132. Han J, Turner S, Craighead H (1999) Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett 83(8):1688

    Article  Google Scholar 

  133. Han J, Craighead H (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288(5468):1026–1029

    Article  Google Scholar 

  134. Zhou LV, Liu MB, Chang JZ (2012) Dissipative particle dynamics simulations of macromolecules in micro-channels. Acta Polym Sin 7:720–727

    Article  Google Scholar 

  135. Suresh S (2006) Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J Mater Res 21(08):1871–1877

    Article  MathSciNet  Google Scholar 

  136. Lee GY, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25(3):111–118

    Article  MathSciNet  Google Scholar 

  137. Bathe M, Shirai A, Doerschuk CM, Kamm RD (2002) Neutrophil transit times through pulmonary capillaries: the effects of capillary geometry and fMLP-stimulation. Biophys J 83(4):1917–1933

  138. Hou H, Li Q, Lee G, Kumar A, Ong C, Lim C (2009) Deformability study of breast cancer cells using microfluidics. Biomed Microdevices 11(3):557–564

    Article  Google Scholar 

  139. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014

    Article  Google Scholar 

  140. Lim C, Zhou E, Quek S (2006) Mechanical models for living cells—a review. J Biomech 39(2):195–216

    Article  Google Scholar 

  141. Schmid-Schönbein G, Sung K, Tözeren H, Skalak R, Chien S (1981) Passive mechanical properties of human leukocytes. Biophys J 36(1):243–256

    Article  Google Scholar 

  142. Theret DP, Levesque M, Sato M, Nerem R, Wheeler L (1988) The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng 110(3):190–199

    Article  Google Scholar 

  143. Mijailovich SM, Kojic M, Zivkovic M, Fabry B, Fredberg JJ (2002) A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol 93(4):1429–1436

    Article  Google Scholar 

  144. Jones WR, Ping Ting-Beall H, Lee GM, Kelley SS, Hochmuth RM, Guilak F (1999) Alterations in the young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32(2):119–127

    Article  Google Scholar 

  145. Yeung A, Evans E (1989) Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J 56(1):139–149

    Article  Google Scholar 

  146. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56(1):151–160

    Article  Google Scholar 

  147. Hochmuth R, Ting-Beall H, Beaty B, Needham D, Tran-Son-Tay R (1993) Viscosity of passive human neutrophils undergoing small deformations. Biophys J 64(5):1596–1601

    Article  Google Scholar 

  148. Tran-Son-Tay R, Kan H-C, Udaykumar H, Damay E, Shyy W (1998) Rheological modelling of leukocytes. Med Biol Eng Comput 36(2):246–250

    Article  Google Scholar 

  149. Agresar G, Linderman J, Tryggvason G, Powell K (1998) An adaptive, cartesian, front-tracking method for the motion, deformation and adhesion of circulating cells. J Comput Phys 143(2):346–380

    Article  MATH  MathSciNet  Google Scholar 

  150. Kan H-C, Shyy W, Udaykumar H, Vigneron P, Tran-Son-Tay R (1999) Effects of nucleus on leukocyte recovery. Ann Biomed Eng 27(5):648–655

    Article  Google Scholar 

  151. N’dri N, Shyy W, Tran-Son-Tay R (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85(4):2273–2286

  152. Marella SV, Udaykumar H (2004) Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys Fluids 16:244

  153. Leong FY, Li Q, Lim CT, Chiam K-H (2011) Modeling cell entry into a micro-channel. Biomech Model Mechanobiol 10(5):755–766

    Article  Google Scholar 

  154. Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J 75(3):1584–1597

    Article  Google Scholar 

  155. Li J, Dao M, Lim C, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88(5):3707–3719

    Article  Google Scholar 

  156. Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101(11):118105

    Article  Google Scholar 

  157. Tomaiuolo G, Preziosi V, Simeone M, Guido S, Ciancia R, Martineelli V, Rinaldi C, Rotoli B (2007) A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Ann ’Ist Super sanità 43(2):186–192

    Google Scholar 

  158. Fedosov DA, Caswell B, Karniadakis GE (2010) Systematic coarse-graining of spectrin-level red blood cell models. Comput Method Appl Mech Eng 199(29):1937–1948

    Article  MATH  MathSciNet  Google Scholar 

  159. Fedosov DA, Caswell B, Karniadakis GE (2011) Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J 100(9):2084–2093

    Article  Google Scholar 

  160. Zhou LV, Liu MB, Chang JZ (2012) Dissipative particle dynamics simulations of cell micropipetting. Adances in computational mechanics of granular materials. Dalian University of Technology Press, Dalian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M.B., Liu, G.R., Zhou, L.W. et al. Dissipative Particle Dynamics (DPD): An Overview and Recent Developments. Arch Computat Methods Eng 22, 529–556 (2015). https://doi.org/10.1007/s11831-014-9124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9124-x

Keywords

Navigation